yuzu-tx-update/src/core/hle/kernel/process.cpp

452 lines
16 KiB
C++
Raw Normal View History

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2018-01-01 16:38:34 -03:00
#include <algorithm>
#include <bitset>
#include <ctime>
#include <memory>
#include <random>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
2020-04-08 22:19:12 -04:00
#include "core/device_memory.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/code_set.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/kernel.h"
2020-04-08 22:19:12 -04:00
#include "core/hle/kernel/memory/memory_block_manager.h"
#include "core/hle/kernel/memory/page_table.h"
#include "core/hle/kernel/memory/slab_heap.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/lock.h"
#include "core/memory.h"
#include "core/settings.h"
namespace Kernel {
namespace {
/**
* Sets up the primary application thread
*
* @param system The system instance to create the main thread under.
* @param owner_process The parent process for the main thread
* @param priority The priority to give the main thread
*/
void SetupMainThread(Core::System& system, Process& owner_process, u32 priority, VAddr stack_top) {
2020-04-08 22:19:12 -04:00
const VAddr entry_point = owner_process.PageTable().GetCodeRegionStart();
ThreadType type = THREADTYPE_USER;
auto thread_res = Thread::Create(system, type, "main", entry_point, priority, 0,
owner_process.GetIdealCore(), stack_top, &owner_process);
std::shared_ptr<Thread> thread = std::move(thread_res).Unwrap();
// Register 1 must be a handle to the main thread
const Handle thread_handle = owner_process.GetHandleTable().Create(thread).Unwrap();
thread->GetContext32().cpu_registers[0] = 0;
thread->GetContext64().cpu_registers[0] = 0;
thread->GetContext32().cpu_registers[1] = thread_handle;
thread->GetContext64().cpu_registers[1] = thread_handle;
auto& kernel = system.Kernel();
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
{
KScopedSchedulerLock lock{kernel};
thread->SetState(ThreadState::Runnable);
}
}
} // Anonymous namespace
// Represents a page used for thread-local storage.
//
// Each TLS page contains slots that may be used by processes and threads.
// Every process and thread is created with a slot in some arbitrary page
// (whichever page happens to have an available slot).
class TLSPage {
public:
static constexpr std::size_t num_slot_entries =
Core::Memory::PAGE_SIZE / Core::Memory::TLS_ENTRY_SIZE;
explicit TLSPage(VAddr address) : base_address{address} {}
bool HasAvailableSlots() const {
return !is_slot_used.all();
}
VAddr GetBaseAddress() const {
return base_address;
}
std::optional<VAddr> ReserveSlot() {
for (std::size_t i = 0; i < is_slot_used.size(); i++) {
if (is_slot_used[i]) {
continue;
}
is_slot_used[i] = true;
return base_address + (i * Core::Memory::TLS_ENTRY_SIZE);
}
return std::nullopt;
}
void ReleaseSlot(VAddr address) {
// Ensure that all given addresses are consistent with how TLS pages
// are intended to be used when releasing slots.
ASSERT(IsWithinPage(address));
ASSERT((address % Core::Memory::TLS_ENTRY_SIZE) == 0);
const std::size_t index = (address - base_address) / Core::Memory::TLS_ENTRY_SIZE;
is_slot_used[index] = false;
}
private:
bool IsWithinPage(VAddr address) const {
return base_address <= address && address < base_address + Core::Memory::PAGE_SIZE;
}
VAddr base_address;
std::bitset<num_slot_entries> is_slot_used;
};
std::shared_ptr<Process> Process::Create(Core::System& system, std::string name, ProcessType type) {
auto& kernel = system.Kernel();
std::shared_ptr<Process> process = std::make_shared<Process>(system);
process->name = std::move(name);
2020-04-08 22:19:12 -04:00
process->resource_limit = ResourceLimit::Create(kernel);
2018-01-01 16:38:34 -03:00
process->status = ProcessStatus::Created;
process->program_id = 0;
process->process_id = type == ProcessType::KernelInternal ? kernel.CreateNewKernelProcessID()
: kernel.CreateNewUserProcessID();
process->capabilities.InitializeForMetadatalessProcess();
std::mt19937 rng(Settings::values.rng_seed.GetValue().value_or(std::time(nullptr)));
std::uniform_int_distribution<u64> distribution;
std::generate(process->random_entropy.begin(), process->random_entropy.end(),
[&] { return distribution(rng); });
kernel.AppendNewProcess(process);
return process;
}
std::shared_ptr<ResourceLimit> Process::GetResourceLimit() const {
return resource_limit;
}
u64 Process::GetTotalPhysicalMemoryAvailable() const {
2020-10-20 23:07:39 -03:00
const u64 capacity{resource_limit->GetCurrentResourceValue(ResourceType::PhysicalMemory) +
page_table->GetTotalHeapSize() + GetSystemResourceSize() + image_size +
main_thread_stack_size};
2020-04-08 22:19:12 -04:00
if (capacity < memory_usage_capacity) {
return capacity;
}
return memory_usage_capacity;
}
2019-07-07 14:48:11 -04:00
u64 Process::GetTotalPhysicalMemoryAvailableWithoutSystemResource() const {
return GetTotalPhysicalMemoryAvailable() - GetSystemResourceSize();
}
u64 Process::GetTotalPhysicalMemoryUsed() const {
return image_size + main_thread_stack_size + page_table->GetTotalHeapSize() +
GetSystemResourceSize();
}
2019-07-07 14:48:11 -04:00
u64 Process::GetTotalPhysicalMemoryUsedWithoutSystemResource() const {
return GetTotalPhysicalMemoryUsed() - GetSystemResourceUsage();
}
void Process::InsertConditionVariableThread(std::shared_ptr<Thread> thread) {
VAddr cond_var_addr = thread->GetCondVarWaitAddress();
std::list<std::shared_ptr<Thread>>& thread_list = cond_var_threads[cond_var_addr];
auto it = thread_list.begin();
while (it != thread_list.end()) {
const std::shared_ptr<Thread> current_thread = *it;
if (current_thread->GetPriority() > thread->GetPriority()) {
thread_list.insert(it, thread);
return;
}
++it;
}
thread_list.push_back(thread);
}
void Process::RemoveConditionVariableThread(std::shared_ptr<Thread> thread) {
VAddr cond_var_addr = thread->GetCondVarWaitAddress();
std::list<std::shared_ptr<Thread>>& thread_list = cond_var_threads[cond_var_addr];
auto it = thread_list.begin();
while (it != thread_list.end()) {
const std::shared_ptr<Thread> current_thread = *it;
if (current_thread.get() == thread.get()) {
thread_list.erase(it);
return;
}
++it;
}
}
std::vector<std::shared_ptr<Thread>> Process::GetConditionVariableThreads(
const VAddr cond_var_addr) {
std::vector<std::shared_ptr<Thread>> result{};
std::list<std::shared_ptr<Thread>>& thread_list = cond_var_threads[cond_var_addr];
auto it = thread_list.begin();
while (it != thread_list.end()) {
std::shared_ptr<Thread> current_thread = *it;
result.push_back(current_thread);
++it;
}
return result;
}
void Process::RegisterThread(const Thread* thread) {
thread_list.push_back(thread);
}
void Process::UnregisterThread(const Thread* thread) {
thread_list.remove(thread);
}
ResultCode Process::ClearSignalState() {
KScopedSchedulerLock lock(system.Kernel());
if (status == ProcessStatus::Exited) {
LOG_ERROR(Kernel, "called on a terminated process instance.");
return ERR_INVALID_STATE;
}
if (!is_signaled) {
LOG_ERROR(Kernel, "called on a process instance that isn't signaled.");
return ERR_INVALID_STATE;
}
is_signaled = false;
return RESULT_SUCCESS;
}
2020-04-08 22:19:12 -04:00
ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata,
std::size_t code_size) {
program_id = metadata.GetTitleID();
ideal_core = metadata.GetMainThreadCore();
is_64bit_process = metadata.Is64BitProgram();
system_resource_size = metadata.GetSystemResourceSize();
2020-04-08 22:19:12 -04:00
image_size = code_size;
// Initialize proces address space
if (const ResultCode result{
page_table->InitializeForProcess(metadata.GetAddressSpaceType(), false, 0x8000000,
code_size, Memory::MemoryManager::Pool::Application)};
result.IsError()) {
return result;
}
2020-04-08 22:19:12 -04:00
// Map process code region
if (const ResultCode result{page_table->MapProcessCode(
page_table->GetCodeRegionStart(), code_size / Memory::PageSize,
Memory::MemoryState::Code, Memory::MemoryPermission::None)};
result.IsError()) {
return result;
}
2020-04-08 22:19:12 -04:00
// Initialize process capabilities
const auto& caps{metadata.GetKernelCapabilities()};
if (const ResultCode result{
capabilities.InitializeForUserProcess(caps.data(), caps.size(), *page_table)};
result.IsError()) {
return result;
}
2020-04-08 22:19:12 -04:00
// Set memory usage capacity
switch (metadata.GetAddressSpaceType()) {
case FileSys::ProgramAddressSpaceType::Is32Bit:
case FileSys::ProgramAddressSpaceType::Is36Bit:
case FileSys::ProgramAddressSpaceType::Is39Bit:
memory_usage_capacity = page_table->GetHeapRegionEnd() - page_table->GetHeapRegionStart();
break;
case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
memory_usage_capacity = page_table->GetHeapRegionEnd() - page_table->GetHeapRegionStart() +
page_table->GetAliasRegionEnd() - page_table->GetAliasRegionStart();
break;
default:
UNREACHABLE();
}
// Set initial resource limits
resource_limit->SetLimitValue(
ResourceType::PhysicalMemory,
2020-10-20 23:07:39 -03:00
kernel.MemoryManager().GetSize(Memory::MemoryManager::Pool::Application));
2020-04-08 22:19:12 -04:00
resource_limit->SetLimitValue(ResourceType::Threads, 608);
resource_limit->SetLimitValue(ResourceType::Events, 700);
resource_limit->SetLimitValue(ResourceType::TransferMemory, 128);
resource_limit->SetLimitValue(ResourceType::Sessions, 894);
2020-10-20 23:07:39 -03:00
ASSERT(resource_limit->Reserve(ResourceType::PhysicalMemory, code_size));
2020-04-08 22:19:12 -04:00
// Create TLS region
tls_region_address = CreateTLSRegion();
return handle_table.SetSize(capabilities.GetHandleTableSize());
}
void Process::Run(s32 main_thread_priority, u64 stack_size) {
AllocateMainThreadStack(stack_size);
2020-04-08 22:19:12 -04:00
const std::size_t heap_capacity{memory_usage_capacity - main_thread_stack_size - image_size};
ASSERT(!page_table->SetHeapCapacity(heap_capacity).IsError());
ChangeStatus(ProcessStatus::Running);
2020-10-20 23:07:39 -03:00
SetupMainThread(system, *this, main_thread_priority, main_thread_stack_top);
2020-04-08 22:19:12 -04:00
resource_limit->Reserve(ResourceType::Threads, 1);
2020-10-20 23:07:39 -03:00
resource_limit->Reserve(ResourceType::PhysicalMemory, main_thread_stack_size);
}
void Process::PrepareForTermination() {
ChangeStatus(ProcessStatus::Exiting);
const auto stop_threads = [this](const std::vector<std::shared_ptr<Thread>>& thread_list) {
for (auto& thread : thread_list) {
if (thread->GetOwnerProcess() != this)
continue;
if (thread.get() == kernel.CurrentScheduler()->GetCurrentThread())
continue;
// TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->GetState() == ThreadState::Waiting,
"Exiting processes with non-waiting threads is currently unimplemented");
thread->Stop();
}
};
stop_threads(system.GlobalSchedulerContext().GetThreadList());
FreeTLSRegion(tls_region_address);
tls_region_address = 0;
ChangeStatus(ProcessStatus::Exited);
}
/**
* Attempts to find a TLS page that contains a free slot for
* use by a thread.
*
* @returns If a page with an available slot is found, then an iterator
* pointing to the page is returned. Otherwise the end iterator
* is returned instead.
*/
static auto FindTLSPageWithAvailableSlots(std::vector<TLSPage>& tls_pages) {
return std::find_if(tls_pages.begin(), tls_pages.end(),
[](const auto& page) { return page.HasAvailableSlots(); });
}
VAddr Process::CreateTLSRegion() {
KScopedSchedulerLock lock(system.Kernel());
2020-04-08 22:19:12 -04:00
if (auto tls_page_iter{FindTLSPageWithAvailableSlots(tls_pages)};
tls_page_iter != tls_pages.cend()) {
return *tls_page_iter->ReserveSlot();
}
2020-04-08 22:19:12 -04:00
Memory::Page* const tls_page_ptr{kernel.GetUserSlabHeapPages().Allocate()};
ASSERT(tls_page_ptr);
2020-04-08 22:19:12 -04:00
const VAddr start{page_table->GetKernelMapRegionStart()};
const VAddr size{page_table->GetKernelMapRegionEnd() - start};
const PAddr tls_map_addr{system.DeviceMemory().GetPhysicalAddr(tls_page_ptr)};
const VAddr tls_page_addr{
page_table
->AllocateAndMapMemory(1, Memory::PageSize, true, start, size / Memory::PageSize,
Memory::MemoryState::ThreadLocal,
Memory::MemoryPermission::ReadAndWrite, tls_map_addr)
2020-10-20 23:07:39 -03:00
.ValueOr(0)};
2020-04-08 22:19:12 -04:00
ASSERT(tls_page_addr);
2020-04-08 22:19:12 -04:00
std::memset(tls_page_ptr, 0, Memory::PageSize);
tls_pages.emplace_back(tls_page_addr);
2020-04-08 22:19:12 -04:00
const auto reserve_result{tls_pages.back().ReserveSlot()};
ASSERT(reserve_result.has_value());
2020-04-08 22:19:12 -04:00
return *reserve_result;
}
void Process::FreeTLSRegion(VAddr tls_address) {
KScopedSchedulerLock lock(system.Kernel());
const VAddr aligned_address = Common::AlignDown(tls_address, Core::Memory::PAGE_SIZE);
auto iter =
std::find_if(tls_pages.begin(), tls_pages.end(), [aligned_address](const auto& page) {
return page.GetBaseAddress() == aligned_address;
});
// Something has gone very wrong if we're freeing a region
// with no actual page available.
ASSERT(iter != tls_pages.cend());
iter->ReleaseSlot(tls_address);
}
2020-04-08 22:19:12 -04:00
void Process::LoadModule(CodeSet code_set, VAddr base_addr) {
std::lock_guard lock{HLE::g_hle_lock};
2020-04-08 22:19:12 -04:00
const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
Memory::MemoryPermission permission) {
page_table->SetCodeMemoryPermission(segment.addr + base_addr, segment.size, permission);
};
2020-04-08 22:19:12 -04:00
system.Memory().WriteBlock(*this, base_addr, code_set.memory.data(), code_set.memory.size());
ReprotectSegment(code_set.CodeSegment(), Memory::MemoryPermission::ReadAndExecute);
ReprotectSegment(code_set.RODataSegment(), Memory::MemoryPermission::Read);
ReprotectSegment(code_set.DataSegment(), Memory::MemoryPermission::ReadAndWrite);
}
bool Process::IsSignaled() const {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
return is_signaled;
}
Process::Process(Core::System& system)
: KSynchronizationObject{system.Kernel()}, page_table{std::make_unique<Memory::PageTable>(
system)},
handle_table{system.Kernel()}, address_arbiter{system}, mutex{system}, system{system} {}
Process::~Process() = default;
void Process::ChangeStatus(ProcessStatus new_status) {
if (status == new_status) {
return;
}
status = new_status;
is_signaled = true;
NotifyAvailable();
}
2020-04-08 22:19:12 -04:00
ResultCode Process::AllocateMainThreadStack(std::size_t stack_size) {
ASSERT(stack_size);
// The kernel always ensures that the given stack size is page aligned.
2020-04-08 22:19:12 -04:00
main_thread_stack_size = Common::AlignUp(stack_size, Memory::PageSize);
const VAddr start{page_table->GetStackRegionStart()};
const std::size_t size{page_table->GetStackRegionEnd() - start};
CASCADE_RESULT(main_thread_stack_top,
page_table->AllocateAndMapMemory(
main_thread_stack_size / Memory::PageSize, Memory::PageSize, false, start,
size / Memory::PageSize, Memory::MemoryState::Stack,
Memory::MemoryPermission::ReadAndWrite));
main_thread_stack_top += main_thread_stack_size;
return RESULT_SUCCESS;
}
2018-01-01 16:38:34 -03:00
} // namespace Kernel