yuzu-tx-update/src/core/hle/kernel/thread.h

693 lines
19 KiB
C++
Raw Normal View History

2014-05-09 22:11:18 -04:00
// Copyright 2014 Citra Emulator Project / PPSSPP Project
2014-12-17 02:38:14 -03:00
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2014-05-09 22:11:18 -04:00
#pragma once
#include <array>
#include <functional>
#include <string>
#include <utility>
#include <vector>
2014-05-09 22:11:18 -04:00
#include "common/common_types.h"
#include "common/spin_lock.h"
#include "core/arm/arm_interface.h"
#include "core/hle/kernel/k_affinity_mask.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/object.h"
#include "core/hle/result.h"
2014-05-09 22:11:18 -04:00
namespace Common {
class Fiber;
}
namespace Core {
class ARM_Interface;
class System;
} // namespace Core
namespace Kernel {
class GlobalSchedulerContext;
class KernelCore;
class Process;
class KScheduler;
2017-09-26 20:26:09 -03:00
enum ThreadPriority : u32 {
2020-02-25 20:43:28 -03:00
THREADPRIO_HIGHEST = 0, ///< Highest thread priority
THREADPRIO_MAX_CORE_MIGRATION = 2, ///< Highest priority for a core migration
THREADPRIO_USERLAND_MAX = 24, ///< Highest thread priority for userland apps
THREADPRIO_DEFAULT = 44, ///< Default thread priority for userland apps
THREADPRIO_LOWEST = 63, ///< Lowest thread priority
THREADPRIO_COUNT = 64, ///< Total number of possible thread priorities.
};
enum ThreadType : u32 {
THREADTYPE_USER = 0x1,
THREADTYPE_KERNEL = 0x2,
THREADTYPE_HLE = 0x4,
THREADTYPE_IDLE = 0x8,
THREADTYPE_SUSPEND = 0x10,
};
enum ThreadProcessorId : s32 {
/// Indicates that no particular processor core is preferred.
THREADPROCESSORID_DONT_CARE = -1,
/// Run thread on the ideal core specified by the process.
THREADPROCESSORID_IDEAL = -2,
/// Indicates that the preferred processor ID shouldn't be updated in
/// a core mask setting operation.
THREADPROCESSORID_DONT_UPDATE = -3,
THREADPROCESSORID_0 = 0, ///< Run thread on core 0
THREADPROCESSORID_1 = 1, ///< Run thread on core 1
THREADPROCESSORID_2 = 2, ///< Run thread on core 2
THREADPROCESSORID_3 = 3, ///< Run thread on core 3
THREADPROCESSORID_MAX = 4, ///< Processor ID must be less than this
/// Allowed CPU mask
THREADPROCESSORID_DEFAULT_MASK = (1 << THREADPROCESSORID_0) | (1 << THREADPROCESSORID_1) |
(1 << THREADPROCESSORID_2) | (1 << THREADPROCESSORID_3)
};
enum class ThreadStatus {
Ready, ///< Ready to run
Paused, ///< Paused by SetThreadActivity or debug
WaitHLEEvent, ///< Waiting for hle event to finish
WaitSleep, ///< Waiting due to a SleepThread SVC
WaitIPC, ///< Waiting for the reply from an IPC request
WaitSynch, ///< Waiting due to WaitSynchronization
2019-03-13 20:55:04 -03:00
WaitMutex, ///< Waiting due to an ArbitrateLock svc
WaitCondVar, ///< Waiting due to an WaitProcessWideKey svc
WaitArb, ///< Waiting due to a SignalToAddress/WaitForAddress svc
Dormant, ///< Created but not yet made ready
Dead ///< Run to completion, or forcefully terminated
};
enum class ThreadWakeupReason {
Signal, // The thread was woken up by WakeupAllWaitingThreads due to an object signal.
Timeout // The thread was woken up due to a wait timeout.
};
enum class ThreadActivity : u32 {
Normal = 0,
Paused = 1,
};
2019-06-19 09:11:18 -04:00
enum class ThreadSchedStatus : u32 {
None = 0,
Paused = 1,
Runnable = 2,
Exited = 3,
};
2019-10-12 11:13:25 -03:00
enum class ThreadSchedFlags : u32 {
ProcessPauseFlag = 1 << 4,
ThreadPauseFlag = 1 << 5,
ProcessDebugPauseFlag = 1 << 6,
KernelInitPauseFlag = 1 << 8,
};
2019-10-12 11:13:25 -03:00
enum class ThreadSchedMasks : u32 {
LowMask = 0x000f,
HighMask = 0xfff0,
ForcePauseMask = 0x0070,
};
class Thread final : public KSynchronizationObject {
public:
explicit Thread(KernelCore& kernel);
~Thread() override;
using MutexWaitingThreads = std::vector<std::shared_ptr<Thread>>;
using ThreadContext32 = Core::ARM_Interface::ThreadContext32;
using ThreadContext64 = Core::ARM_Interface::ThreadContext64;
2020-02-25 20:43:28 -03:00
/**
* Creates and returns a new thread. The new thread is immediately scheduled
* @param system The instance of the whole system
* @param name The friendly name desired for the thread
* @param entry_point The address at which the thread should start execution
* @param priority The thread's priority
* @param arg User data to pass to the thread
* @param processor_id The ID(s) of the processors on which the thread is desired to be run
* @param stack_top The address of the thread's stack top
* @param owner_process The parent process for the thread, if null, it's a kernel thread
* @return A shared pointer to the newly created thread
*/
static ResultVal<std::shared_ptr<Thread>> Create(Core::System& system, ThreadType type_flags,
std::string name, VAddr entry_point,
u32 priority, u64 arg, s32 processor_id,
VAddr stack_top, Process* owner_process);
/**
* Creates and returns a new thread. The new thread is immediately scheduled
* @param system The instance of the whole system
* @param name The friendly name desired for the thread
* @param entry_point The address at which the thread should start execution
* @param priority The thread's priority
* @param arg User data to pass to the thread
* @param processor_id The ID(s) of the processors on which the thread is desired to be run
* @param stack_top The address of the thread's stack top
* @param owner_process The parent process for the thread, if null, it's a kernel thread
* @param thread_start_func The function where the host context will start.
* @param thread_start_parameter The parameter which will passed to host context on init
* @return A shared pointer to the newly created thread
*/
2020-02-25 20:43:28 -03:00
static ResultVal<std::shared_ptr<Thread>> Create(Core::System& system, ThreadType type_flags,
std::string name, VAddr entry_point,
u32 priority, u64 arg, s32 processor_id,
VAddr stack_top, Process* owner_process,
std::function<void(void*)>&& thread_start_func,
void* thread_start_parameter);
std::string GetName() const override {
return name;
}
void SetName(std::string new_name) {
name = std::move(new_name);
}
std::string GetTypeName() const override {
return "Thread";
}
static constexpr HandleType HANDLE_TYPE = HandleType::Thread;
HandleType GetHandleType() const override {
return HANDLE_TYPE;
}
/**
* Gets the thread's current priority
* @return The current thread's priority
*/
2017-09-26 20:26:09 -03:00
u32 GetPriority() const {
return current_priority;
}
/**
* Gets the thread's nominal priority.
* @return The current thread's nominal priority.
*/
u32 GetNominalPriority() const {
return nominal_priority;
}
/**
* Sets the thread's current priority
* @param priority The new priority
*/
2017-09-26 20:26:09 -03:00
void SetPriority(u32 priority);
/// Adds a thread to the list of threads that are waiting for a lock held by this thread.
void AddMutexWaiter(std::shared_ptr<Thread> thread);
/// Removes a thread from the list of threads that are waiting for a lock held by this thread.
void RemoveMutexWaiter(std::shared_ptr<Thread> thread);
/// Recalculates the current priority taking into account priority inheritance.
void UpdatePriority();
2018-05-06 00:03:01 -03:00
/// Changes the core that the thread is running or scheduled to run on.
ResultCode SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask);
2018-05-06 00:03:01 -03:00
/**
* Gets the thread's thread ID
* @return The thread's ID
*/
u64 GetThreadID() const {
return thread_id;
}
/// Resumes a thread from waiting
void Wakeup();
void OnWakeUp();
ResultCode Start();
virtual bool IsSignaled() const override;
/// Cancels a waiting operation that this thread may or may not be within.
///
/// When the thread is within a waiting state, this will set the thread's
/// waiting result to signal a canceled wait. The function will then resume
/// this thread.
///
void CancelWait();
void SetSynchronizationResults(KSynchronizationObject* object, ResultCode result);
void SetSyncedObject(KSynchronizationObject* object, ResultCode result) {
SetSynchronizationResults(object, result);
}
ResultCode GetWaitResult(KSynchronizationObject** out) const {
*out = this->signaling_object;
return signaling_result;
}
ResultCode GetSignalingResult() const {
return signaling_result;
}
/**
* Stops a thread, invalidating it from further use
*/
void Stop();
/*
* Returns the Thread Local Storage address of the current thread
* @returns VAddr of the thread's TLS
*/
VAddr GetTLSAddress() const {
return tls_address;
}
/*
* Returns the value of the TPIDR_EL0 Read/Write system register for this thread.
* @returns The value of the TPIDR_EL0 register.
*/
u64 GetTPIDR_EL0() const {
return tpidr_el0;
}
/// Sets the value of the TPIDR_EL0 Read/Write system register for this thread.
void SetTPIDR_EL0(u64 value) {
tpidr_el0 = value;
}
/*
* Returns the address of the current thread's command buffer, located in the TLS.
* @returns VAddr of the thread's command buffer.
*/
VAddr GetCommandBufferAddress() const;
ThreadContext32& GetContext32() {
return context_32;
}
const ThreadContext32& GetContext32() const {
return context_32;
}
ThreadContext64& GetContext64() {
return context_64;
}
const ThreadContext64& GetContext64() const {
return context_64;
}
bool IsHLEThread() const {
return (type & THREADTYPE_HLE) != 0;
}
bool IsSuspendThread() const {
return (type & THREADTYPE_SUSPEND) != 0;
}
bool IsIdleThread() const {
return (type & THREADTYPE_IDLE) != 0;
}
bool WasRunning() const {
return was_running;
}
void SetWasRunning(bool value) {
was_running = value;
}
std::shared_ptr<Common::Fiber>& GetHostContext();
ThreadStatus GetStatus() const {
return status;
}
void SetState(ThreadStatus new_status);
s64 GetLastScheduledTick() const {
return this->last_scheduled_tick;
}
void SetLastScheduledTick(s64 tick) {
this->last_scheduled_tick = tick;
}
u64 GetTotalCPUTimeTicks() const {
return total_cpu_time_ticks;
}
void UpdateCPUTimeTicks(u64 ticks) {
total_cpu_time_ticks += ticks;
}
s32 GetProcessorID() const {
return processor_id;
}
s32 GetActiveCore() const {
return GetProcessorID();
}
void SetProcessorID(s32 new_core) {
processor_id = new_core;
}
void SetActiveCore(s32 new_core) {
processor_id = new_core;
}
Process* GetOwnerProcess() {
return owner_process;
}
const Process* GetOwnerProcess() const {
return owner_process;
}
const MutexWaitingThreads& GetMutexWaitingThreads() const {
return wait_mutex_threads;
}
Thread* GetLockOwner() const {
return lock_owner.get();
}
void SetLockOwner(std::shared_ptr<Thread> owner) {
lock_owner = std::move(owner);
}
VAddr GetCondVarWaitAddress() const {
return condvar_wait_address;
}
void SetCondVarWaitAddress(VAddr address) {
condvar_wait_address = address;
}
VAddr GetMutexWaitAddress() const {
return mutex_wait_address;
}
void SetMutexWaitAddress(VAddr address) {
mutex_wait_address = address;
}
Handle GetWaitHandle() const {
return wait_handle;
}
void SetWaitHandle(Handle handle) {
wait_handle = handle;
}
VAddr GetArbiterWaitAddress() const {
return arb_wait_address;
}
void SetArbiterWaitAddress(VAddr address) {
arb_wait_address = address;
}
2020-02-25 20:43:28 -03:00
void SetHLETimeEvent(Handle time_event) {
hle_time_event = time_event;
}
Handle GetHLETimeEvent() const {
return hle_time_event;
}
bool InvokeHLECallback(std::shared_ptr<Thread> thread);
2020-10-20 23:07:39 -03:00
u32 GetIdealCore() const {
return ideal_core;
}
const KAffinityMask& GetAffinityMask() const {
return affinity_mask;
}
2020-03-07 13:44:35 -03:00
ResultCode SetActivity(ThreadActivity value);
/// Sleeps this thread for the given amount of nanoseconds.
ResultCode Sleep(s64 nanoseconds);
s64 GetYieldScheduleCount() const {
return this->schedule_count;
}
void SetYieldScheduleCount(s64 count) {
this->schedule_count = count;
}
ThreadSchedStatus GetState() const {
2019-10-12 11:13:25 -03:00
return static_cast<ThreadSchedStatus>(scheduling_state &
static_cast<u32>(ThreadSchedMasks::LowMask));
}
2020-03-08 12:25:50 -03:00
bool IsRunnable() const {
return scheduling_state == static_cast<u32>(ThreadSchedStatus::Runnable);
}
bool IsRunning() const {
return is_running;
}
void SetIsRunning(bool value) {
is_running = value;
}
bool IsWaitCancelled() const {
return is_sync_cancelled;
}
void ClearWaitCancelled() {
is_sync_cancelled = false;
}
Handle GetGlobalHandle() const {
return global_handle;
}
bool IsWaitingForArbitration() const {
return waiting_for_arbitration;
}
void WaitForArbitration(bool set) {
waiting_for_arbitration = set;
}
bool IsCancellable() const {
return is_cancellable;
}
void SetCancellable() {
is_cancellable = true;
}
void ClearCancellable() {
is_cancellable = false;
}
bool IsTerminationRequested() const {
return will_be_terminated || GetState() == ThreadSchedStatus::Exited;
2020-03-07 13:44:35 -03:00
}
bool IsPaused() const {
return pausing_state != 0;
}
2020-03-10 19:41:11 -03:00
bool IsContinuousOnSVC() const {
return is_continuous_on_svc;
}
void SetContinuousOnSVC(bool is_continuous) {
is_continuous_on_svc = is_continuous;
}
bool IsPhantomMode() const {
return is_phantom_mode;
}
void SetPhantomMode(bool phantom) {
is_phantom_mode = phantom;
}
bool HasExited() const {
return has_exited;
}
class QueueEntry {
public:
constexpr QueueEntry() = default;
constexpr void Initialize() {
this->prev = nullptr;
this->next = nullptr;
}
constexpr Thread* GetPrev() const {
return this->prev;
}
constexpr Thread* GetNext() const {
return this->next;
}
constexpr void SetPrev(Thread* thread) {
this->prev = thread;
}
constexpr void SetNext(Thread* thread) {
this->next = thread;
}
private:
Thread* prev{};
Thread* next{};
};
QueueEntry& GetPriorityQueueEntry(s32 core) {
return this->per_core_priority_queue_entry[core];
}
const QueueEntry& GetPriorityQueueEntry(s32 core) const {
return this->per_core_priority_queue_entry[core];
}
s32 GetDisableDispatchCount() const {
return disable_count;
}
void DisableDispatch() {
ASSERT(GetDisableDispatchCount() >= 0);
disable_count++;
}
void EnableDispatch() {
ASSERT(GetDisableDispatchCount() > 0);
disable_count--;
}
void SetWaitObjectsForDebugging(KSynchronizationObject** objects, s32 num_objects) {
wait_objects_for_debugging.clear();
wait_objects_for_debugging.reserve(num_objects);
for (auto i = 0; i < num_objects; ++i) {
wait_objects_for_debugging.emplace_back(objects[i]);
}
}
const std::vector<KSynchronizationObject*>& GetWaitObjectsForDebugging() const {
return wait_objects_for_debugging;
}
private:
friend class GlobalSchedulerContext;
friend class KScheduler;
friend class Process;
void SetSchedulingStatus(ThreadSchedStatus new_status);
2020-03-07 13:44:35 -03:00
void AddSchedulingFlag(ThreadSchedFlags flag);
void RemoveSchedulingFlag(ThreadSchedFlags flag);
void SetCurrentPriority(u32 new_priority);
Common::SpinLock context_guard{};
ThreadContext32 context_32{};
ThreadContext64 context_64{};
std::shared_ptr<Common::Fiber> host_context{};
ThreadStatus status = ThreadStatus::Dormant;
u32 scheduling_state = 0;
u64 thread_id = 0;
VAddr entry_point = 0;
VAddr stack_top = 0;
std::atomic_int disable_count = 0;
ThreadType type;
/// Nominal thread priority, as set by the emulated application.
/// The nominal priority is the thread priority without priority
/// inheritance taken into account.
u32 nominal_priority = 0;
/// Current thread priority. This may change over the course of the
/// thread's lifetime in order to facilitate priority inheritance.
u32 current_priority = 0;
u64 total_cpu_time_ticks = 0; ///< Total CPU running ticks.
s64 schedule_count{};
s64 last_scheduled_tick{};
s32 processor_id = 0;
VAddr tls_address = 0; ///< Virtual address of the Thread Local Storage of the thread
u64 tpidr_el0 = 0; ///< TPIDR_EL0 read/write system register.
/// Process that owns this thread
Process* owner_process;
/// Objects that the thread is waiting on, in the same order as they were
/// passed to WaitSynchronization. This is used for debugging only.
std::vector<KSynchronizationObject*> wait_objects_for_debugging;
KSynchronizationObject* signaling_object;
ResultCode signaling_result{RESULT_SUCCESS};
/// List of threads that are waiting for a mutex that is held by this thread.
MutexWaitingThreads wait_mutex_threads;
/// Thread that owns the lock that this thread is waiting for.
std::shared_ptr<Thread> lock_owner;
/// If waiting on a ConditionVariable, this is the ConditionVariable address
VAddr condvar_wait_address = 0;
/// If waiting on a Mutex, this is the mutex address
VAddr mutex_wait_address = 0;
/// The handle used to wait for the mutex.
Handle wait_handle = 0;
/// If waiting for an AddressArbiter, this is the address being waited on.
VAddr arb_wait_address{0};
bool waiting_for_arbitration{};
/// Handle used as userdata to reference this object when inserting into the CoreTiming queue.
Handle global_handle = 0;
2020-02-25 20:43:28 -03:00
Handle hle_time_event;
KScheduler* scheduler = nullptr;
std::array<QueueEntry, Core::Hardware::NUM_CPU_CORES> per_core_priority_queue_entry{};
2018-05-02 23:36:51 -03:00
2020-10-20 23:07:39 -03:00
u32 ideal_core{0xFFFFFFFF};
KAffinityMask affinity_mask{};
2018-05-06 00:03:01 -03:00
s32 ideal_core_override = -1;
u32 affinity_override_count = 0;
2020-03-07 13:44:35 -03:00
u32 pausing_state = 0;
bool is_running = false;
bool is_cancellable = false;
bool is_sync_cancelled = false;
2020-03-10 19:41:11 -03:00
bool is_continuous_on_svc = false;
2020-03-07 13:44:35 -03:00
bool will_be_terminated = false;
bool is_phantom_mode = false;
bool has_exited = false;
bool was_running = false;
bool signaled{};
std::string name;
};
} // namespace Kernel