afa8096df5
While changing this code, simplify tracking code to allow returning the base address node, this way callers don't have to manually rebuild it on each invocation.
719 lines
29 KiB
C++
719 lines
29 KiB
C++
// Copyright 2019 yuzu Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include <fmt/format.h>
|
|
|
|
#include "common/assert.h"
|
|
#include "common/bit_field.h"
|
|
#include "common/common_types.h"
|
|
#include "common/logging/log.h"
|
|
#include "video_core/engines/shader_bytecode.h"
|
|
#include "video_core/shader/node_helper.h"
|
|
#include "video_core/shader/shader_ir.h"
|
|
|
|
namespace VideoCommon::Shader {
|
|
|
|
using Tegra::Shader::Instruction;
|
|
using Tegra::Shader::OpCode;
|
|
using Tegra::Shader::Register;
|
|
using Tegra::Shader::TextureMiscMode;
|
|
using Tegra::Shader::TextureProcessMode;
|
|
using Tegra::Shader::TextureType;
|
|
|
|
static std::size_t GetCoordCount(TextureType texture_type) {
|
|
switch (texture_type) {
|
|
case TextureType::Texture1D:
|
|
return 1;
|
|
case TextureType::Texture2D:
|
|
return 2;
|
|
case TextureType::Texture3D:
|
|
case TextureType::TextureCube:
|
|
return 3;
|
|
default:
|
|
UNIMPLEMENTED_MSG("Unhandled texture type: {}", static_cast<u32>(texture_type));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
|
|
const Instruction instr = {program_code[pc]};
|
|
const auto opcode = OpCode::Decode(instr);
|
|
bool is_bindless = false;
|
|
switch (opcode->get().GetId()) {
|
|
case OpCode::Id::TEX: {
|
|
if (instr.tex.UsesMiscMode(TextureMiscMode::NODEP)) {
|
|
LOG_WARNING(HW_GPU, "TEX.NODEP implementation is incomplete");
|
|
}
|
|
|
|
const TextureType texture_type{instr.tex.texture_type};
|
|
const bool is_array = instr.tex.array != 0;
|
|
const bool is_aoffi = instr.tex.UsesMiscMode(TextureMiscMode::AOFFI);
|
|
const bool depth_compare = instr.tex.UsesMiscMode(TextureMiscMode::DC);
|
|
const auto process_mode = instr.tex.GetTextureProcessMode();
|
|
WriteTexInstructionFloat(
|
|
bb, instr,
|
|
GetTexCode(instr, texture_type, process_mode, depth_compare, is_array, is_aoffi, {}));
|
|
break;
|
|
}
|
|
case OpCode::Id::TEX_B: {
|
|
UNIMPLEMENTED_IF_MSG(instr.tex.UsesMiscMode(TextureMiscMode::AOFFI),
|
|
"AOFFI is not implemented");
|
|
|
|
if (instr.tex.UsesMiscMode(TextureMiscMode::NODEP)) {
|
|
LOG_WARNING(HW_GPU, "TEX.NODEP implementation is incomplete");
|
|
}
|
|
|
|
const TextureType texture_type{instr.tex_b.texture_type};
|
|
const bool is_array = instr.tex_b.array != 0;
|
|
const bool is_aoffi = instr.tex.UsesMiscMode(TextureMiscMode::AOFFI);
|
|
const bool depth_compare = instr.tex_b.UsesMiscMode(TextureMiscMode::DC);
|
|
const auto process_mode = instr.tex_b.GetTextureProcessMode();
|
|
WriteTexInstructionFloat(bb, instr,
|
|
GetTexCode(instr, texture_type, process_mode, depth_compare,
|
|
is_array, is_aoffi, {instr.gpr20}));
|
|
break;
|
|
}
|
|
case OpCode::Id::TEXS: {
|
|
const TextureType texture_type{instr.texs.GetTextureType()};
|
|
const bool is_array{instr.texs.IsArrayTexture()};
|
|
const bool depth_compare = instr.texs.UsesMiscMode(TextureMiscMode::DC);
|
|
const auto process_mode = instr.texs.GetTextureProcessMode();
|
|
|
|
if (instr.texs.UsesMiscMode(TextureMiscMode::NODEP)) {
|
|
LOG_WARNING(HW_GPU, "TEXS.NODEP implementation is incomplete");
|
|
}
|
|
|
|
const Node4 components =
|
|
GetTexsCode(instr, texture_type, process_mode, depth_compare, is_array);
|
|
|
|
if (instr.texs.fp32_flag) {
|
|
WriteTexsInstructionFloat(bb, instr, components);
|
|
} else {
|
|
WriteTexsInstructionHalfFloat(bb, instr, components);
|
|
}
|
|
break;
|
|
}
|
|
case OpCode::Id::TLD4: {
|
|
ASSERT(instr.tld4.array == 0);
|
|
UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::NDV),
|
|
"NDV is not implemented");
|
|
UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::PTP),
|
|
"PTP is not implemented");
|
|
|
|
if (instr.tld4.UsesMiscMode(TextureMiscMode::NODEP)) {
|
|
LOG_WARNING(HW_GPU, "TLD4.NODEP implementation is incomplete");
|
|
}
|
|
|
|
const auto texture_type = instr.tld4.texture_type.Value();
|
|
const bool depth_compare = instr.tld4.UsesMiscMode(TextureMiscMode::DC);
|
|
const bool is_array = instr.tld4.array != 0;
|
|
const bool is_aoffi = instr.tld4.UsesMiscMode(TextureMiscMode::AOFFI);
|
|
WriteTexInstructionFloat(
|
|
bb, instr, GetTld4Code(instr, texture_type, depth_compare, is_array, is_aoffi));
|
|
break;
|
|
}
|
|
case OpCode::Id::TLD4S: {
|
|
UNIMPLEMENTED_IF_MSG(instr.tld4s.UsesMiscMode(TextureMiscMode::AOFFI),
|
|
"AOFFI is not implemented");
|
|
if (instr.tld4s.UsesMiscMode(TextureMiscMode::NODEP)) {
|
|
LOG_WARNING(HW_GPU, "TLD4S.NODEP implementation is incomplete");
|
|
}
|
|
|
|
const bool depth_compare = instr.tld4s.UsesMiscMode(TextureMiscMode::DC);
|
|
const Node op_a = GetRegister(instr.gpr8);
|
|
const Node op_b = GetRegister(instr.gpr20);
|
|
|
|
// TODO(Subv): Figure out how the sampler type is encoded in the TLD4S instruction.
|
|
std::vector<Node> coords;
|
|
if (depth_compare) {
|
|
// Note: TLD4S coordinate encoding works just like TEXS's
|
|
const Node op_y = GetRegister(instr.gpr8.Value() + 1);
|
|
coords.push_back(op_a);
|
|
coords.push_back(op_y);
|
|
coords.push_back(op_b);
|
|
} else {
|
|
coords.push_back(op_a);
|
|
coords.push_back(op_b);
|
|
}
|
|
const Node component = Immediate(static_cast<u32>(instr.tld4s.component));
|
|
|
|
const auto& sampler =
|
|
GetSampler(instr.sampler, TextureType::Texture2D, false, depth_compare);
|
|
|
|
Node4 values;
|
|
for (u32 element = 0; element < values.size(); ++element) {
|
|
auto coords_copy = coords;
|
|
MetaTexture meta{sampler, {}, {}, {}, {}, {}, component, element};
|
|
values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy));
|
|
}
|
|
|
|
WriteTexsInstructionFloat(bb, instr, values);
|
|
break;
|
|
}
|
|
case OpCode::Id::TXQ_B:
|
|
is_bindless = true;
|
|
[[fallthrough]];
|
|
case OpCode::Id::TXQ: {
|
|
if (instr.txq.UsesMiscMode(TextureMiscMode::NODEP)) {
|
|
LOG_WARNING(HW_GPU, "TXQ.NODEP implementation is incomplete");
|
|
}
|
|
|
|
// TODO: The new commits on the texture refactor, change the way samplers work.
|
|
// Sadly, not all texture instructions specify the type of texture their sampler
|
|
// uses. This must be fixed at a later instance.
|
|
const auto& sampler =
|
|
is_bindless
|
|
? GetBindlessSampler(instr.gpr8, Tegra::Shader::TextureType::Texture2D, false,
|
|
false)
|
|
: GetSampler(instr.sampler, Tegra::Shader::TextureType::Texture2D, false, false);
|
|
|
|
u32 indexer = 0;
|
|
switch (instr.txq.query_type) {
|
|
case Tegra::Shader::TextureQueryType::Dimension: {
|
|
for (u32 element = 0; element < 4; ++element) {
|
|
if (!instr.txq.IsComponentEnabled(element)) {
|
|
continue;
|
|
}
|
|
MetaTexture meta{sampler, {}, {}, {}, {}, {}, {}, element};
|
|
const Node value =
|
|
Operation(OperationCode::TextureQueryDimensions, meta,
|
|
GetRegister(instr.gpr8.Value() + (is_bindless ? 1 : 0)));
|
|
SetTemporal(bb, indexer++, value);
|
|
}
|
|
for (u32 i = 0; i < indexer; ++i) {
|
|
SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i));
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNIMPLEMENTED_MSG("Unhandled texture query type: {}",
|
|
static_cast<u32>(instr.txq.query_type.Value()));
|
|
}
|
|
break;
|
|
}
|
|
case OpCode::Id::TMML_B:
|
|
is_bindless = true;
|
|
[[fallthrough]];
|
|
case OpCode::Id::TMML: {
|
|
UNIMPLEMENTED_IF_MSG(instr.tmml.UsesMiscMode(Tegra::Shader::TextureMiscMode::NDV),
|
|
"NDV is not implemented");
|
|
|
|
if (instr.tmml.UsesMiscMode(TextureMiscMode::NODEP)) {
|
|
LOG_WARNING(HW_GPU, "TMML.NODEP implementation is incomplete");
|
|
}
|
|
|
|
auto texture_type = instr.tmml.texture_type.Value();
|
|
const bool is_array = instr.tmml.array != 0;
|
|
const auto& sampler = is_bindless
|
|
? GetBindlessSampler(instr.gpr20, texture_type, is_array, false)
|
|
: GetSampler(instr.sampler, texture_type, is_array, false);
|
|
|
|
std::vector<Node> coords;
|
|
|
|
// TODO: Add coordinates for different samplers once other texture types are implemented.
|
|
switch (texture_type) {
|
|
case TextureType::Texture1D:
|
|
coords.push_back(GetRegister(instr.gpr8));
|
|
break;
|
|
case TextureType::Texture2D:
|
|
coords.push_back(GetRegister(instr.gpr8.Value() + 0));
|
|
coords.push_back(GetRegister(instr.gpr8.Value() + 1));
|
|
break;
|
|
default:
|
|
UNIMPLEMENTED_MSG("Unhandled texture type {}", static_cast<u32>(texture_type));
|
|
|
|
// Fallback to interpreting as a 2D texture for now
|
|
coords.push_back(GetRegister(instr.gpr8.Value() + 0));
|
|
coords.push_back(GetRegister(instr.gpr8.Value() + 1));
|
|
texture_type = TextureType::Texture2D;
|
|
}
|
|
u32 indexer = 0;
|
|
for (u32 element = 0; element < 2; ++element) {
|
|
if (!instr.tmml.IsComponentEnabled(element)) {
|
|
continue;
|
|
}
|
|
auto params = coords;
|
|
MetaTexture meta{sampler, {}, {}, {}, {}, {}, {}, element};
|
|
const Node value = Operation(OperationCode::TextureQueryLod, meta, std::move(params));
|
|
SetTemporal(bb, indexer++, value);
|
|
}
|
|
for (u32 i = 0; i < indexer; ++i) {
|
|
SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i));
|
|
}
|
|
break;
|
|
}
|
|
case OpCode::Id::TLD: {
|
|
UNIMPLEMENTED_IF_MSG(instr.tld.aoffi, "AOFFI is not implemented");
|
|
UNIMPLEMENTED_IF_MSG(instr.tld.ms, "MS is not implemented");
|
|
UNIMPLEMENTED_IF_MSG(instr.tld.cl, "CL is not implemented");
|
|
|
|
if (instr.tld.nodep_flag) {
|
|
LOG_WARNING(HW_GPU, "TLD.NODEP implementation is incomplete");
|
|
}
|
|
|
|
WriteTexInstructionFloat(bb, instr, GetTldCode(instr));
|
|
break;
|
|
}
|
|
case OpCode::Id::TLDS: {
|
|
const Tegra::Shader::TextureType texture_type{instr.tlds.GetTextureType()};
|
|
const bool is_array{instr.tlds.IsArrayTexture()};
|
|
|
|
UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::AOFFI),
|
|
"AOFFI is not implemented");
|
|
UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::MZ), "MZ is not implemented");
|
|
|
|
if (instr.tlds.UsesMiscMode(TextureMiscMode::NODEP)) {
|
|
LOG_WARNING(HW_GPU, "TLDS.NODEP implementation is incomplete");
|
|
}
|
|
|
|
const Node4 components = GetTldsCode(instr, texture_type, is_array);
|
|
|
|
if (instr.tlds.fp32_flag) {
|
|
WriteTexsInstructionFloat(bb, instr, components);
|
|
} else {
|
|
WriteTexsInstructionHalfFloat(bb, instr, components);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNIMPLEMENTED_MSG("Unhandled memory instruction: {}", opcode->get().GetName());
|
|
}
|
|
|
|
return pc;
|
|
}
|
|
|
|
const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler, TextureType type,
|
|
bool is_array, bool is_shadow) {
|
|
const auto offset = static_cast<std::size_t>(sampler.index.Value());
|
|
|
|
// If this sampler has already been used, return the existing mapping.
|
|
const auto itr =
|
|
std::find_if(used_samplers.begin(), used_samplers.end(),
|
|
[&](const Sampler& entry) { return entry.GetOffset() == offset; });
|
|
if (itr != used_samplers.end()) {
|
|
ASSERT(itr->GetType() == type && itr->IsArray() == is_array &&
|
|
itr->IsShadow() == is_shadow);
|
|
return *itr;
|
|
}
|
|
|
|
// Otherwise create a new mapping for this sampler
|
|
const std::size_t next_index = used_samplers.size();
|
|
const Sampler entry{offset, next_index, type, is_array, is_shadow};
|
|
return *used_samplers.emplace(entry).first;
|
|
}
|
|
|
|
const Sampler& ShaderIR::GetBindlessSampler(const Tegra::Shader::Register& reg, TextureType type,
|
|
bool is_array, bool is_shadow) {
|
|
const Node sampler_register = GetRegister(reg);
|
|
const auto [base_sampler, cbuf_index, cbuf_offset] =
|
|
TrackCbuf(sampler_register, global_code, static_cast<s64>(global_code.size()));
|
|
ASSERT(base_sampler != nullptr);
|
|
const auto cbuf_key = (static_cast<u64>(cbuf_index) << 32) | static_cast<u64>(cbuf_offset);
|
|
|
|
// If this sampler has already been used, return the existing mapping.
|
|
const auto itr =
|
|
std::find_if(used_samplers.begin(), used_samplers.end(),
|
|
[&](const Sampler& entry) { return entry.GetOffset() == cbuf_key; });
|
|
if (itr != used_samplers.end()) {
|
|
ASSERT(itr->GetType() == type && itr->IsArray() == is_array &&
|
|
itr->IsShadow() == is_shadow);
|
|
return *itr;
|
|
}
|
|
|
|
// Otherwise create a new mapping for this sampler
|
|
const std::size_t next_index = used_samplers.size();
|
|
const Sampler entry{cbuf_index, cbuf_offset, next_index, type, is_array, is_shadow};
|
|
return *used_samplers.emplace(entry).first;
|
|
}
|
|
|
|
void ShaderIR::WriteTexInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components) {
|
|
u32 dest_elem = 0;
|
|
for (u32 elem = 0; elem < 4; ++elem) {
|
|
if (!instr.tex.IsComponentEnabled(elem)) {
|
|
// Skip disabled components
|
|
continue;
|
|
}
|
|
SetTemporal(bb, dest_elem++, components[elem]);
|
|
}
|
|
// After writing values in temporals, move them to the real registers
|
|
for (u32 i = 0; i < dest_elem; ++i) {
|
|
SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i));
|
|
}
|
|
}
|
|
|
|
void ShaderIR::WriteTexsInstructionFloat(NodeBlock& bb, Instruction instr,
|
|
const Node4& components) {
|
|
// TEXS has two destination registers and a swizzle. The first two elements in the swizzle
|
|
// go into gpr0+0 and gpr0+1, and the rest goes into gpr28+0 and gpr28+1
|
|
|
|
u32 dest_elem = 0;
|
|
for (u32 component = 0; component < 4; ++component) {
|
|
if (!instr.texs.IsComponentEnabled(component))
|
|
continue;
|
|
SetTemporal(bb, dest_elem++, components[component]);
|
|
}
|
|
|
|
for (u32 i = 0; i < dest_elem; ++i) {
|
|
if (i < 2) {
|
|
// Write the first two swizzle components to gpr0 and gpr0+1
|
|
SetRegister(bb, instr.gpr0.Value() + i % 2, GetTemporal(i));
|
|
} else {
|
|
ASSERT(instr.texs.HasTwoDestinations());
|
|
// Write the rest of the swizzle components to gpr28 and gpr28+1
|
|
SetRegister(bb, instr.gpr28.Value() + i % 2, GetTemporal(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
void ShaderIR::WriteTexsInstructionHalfFloat(NodeBlock& bb, Instruction instr,
|
|
const Node4& components) {
|
|
// TEXS.F16 destionation registers are packed in two registers in pairs (just like any half
|
|
// float instruction).
|
|
|
|
Node4 values;
|
|
u32 dest_elem = 0;
|
|
for (u32 component = 0; component < 4; ++component) {
|
|
if (!instr.texs.IsComponentEnabled(component))
|
|
continue;
|
|
values[dest_elem++] = components[component];
|
|
}
|
|
if (dest_elem == 0)
|
|
return;
|
|
|
|
std::generate(values.begin() + dest_elem, values.end(), [&]() { return Immediate(0); });
|
|
|
|
const Node first_value = Operation(OperationCode::HPack2, values[0], values[1]);
|
|
if (dest_elem <= 2) {
|
|
SetRegister(bb, instr.gpr0, first_value);
|
|
return;
|
|
}
|
|
|
|
SetTemporal(bb, 0, first_value);
|
|
SetTemporal(bb, 1, Operation(OperationCode::HPack2, values[2], values[3]));
|
|
|
|
SetRegister(bb, instr.gpr0, GetTemporal(0));
|
|
SetRegister(bb, instr.gpr28, GetTemporal(1));
|
|
}
|
|
|
|
Node4 ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type,
|
|
TextureProcessMode process_mode, std::vector<Node> coords,
|
|
Node array, Node depth_compare, u32 bias_offset,
|
|
std::vector<Node> aoffi,
|
|
std::optional<Tegra::Shader::Register> bindless_reg) {
|
|
const auto is_array = static_cast<bool>(array);
|
|
const auto is_shadow = static_cast<bool>(depth_compare);
|
|
const bool is_bindless = bindless_reg.has_value();
|
|
|
|
UNIMPLEMENTED_IF_MSG((texture_type == TextureType::Texture3D && (is_array || is_shadow)) ||
|
|
(texture_type == TextureType::TextureCube && is_array && is_shadow),
|
|
"This method is not supported.");
|
|
|
|
const auto& sampler = is_bindless
|
|
? GetBindlessSampler(*bindless_reg, texture_type, is_array, is_shadow)
|
|
: GetSampler(instr.sampler, texture_type, is_array, is_shadow);
|
|
|
|
const bool lod_needed = process_mode == TextureProcessMode::LZ ||
|
|
process_mode == TextureProcessMode::LL ||
|
|
process_mode == TextureProcessMode::LLA;
|
|
|
|
// LOD selection (either via bias or explicit textureLod) not
|
|
// supported in GL for sampler2DArrayShadow and
|
|
// samplerCubeArrayShadow.
|
|
const bool gl_lod_supported =
|
|
!((texture_type == Tegra::Shader::TextureType::Texture2D && is_array && is_shadow) ||
|
|
(texture_type == Tegra::Shader::TextureType::TextureCube && is_array && is_shadow));
|
|
|
|
const OperationCode read_method =
|
|
(lod_needed && gl_lod_supported) ? OperationCode::TextureLod : OperationCode::Texture;
|
|
|
|
UNIMPLEMENTED_IF(process_mode != TextureProcessMode::None && !gl_lod_supported);
|
|
|
|
Node bias = {};
|
|
Node lod = {};
|
|
if (process_mode != TextureProcessMode::None && gl_lod_supported) {
|
|
switch (process_mode) {
|
|
case TextureProcessMode::LZ:
|
|
lod = Immediate(0.0f);
|
|
break;
|
|
case TextureProcessMode::LB:
|
|
// If present, lod or bias are always stored in the register
|
|
// indexed by the gpr20 field with an offset depending on the
|
|
// usage of the other registers
|
|
bias = GetRegister(instr.gpr20.Value() + bias_offset);
|
|
break;
|
|
case TextureProcessMode::LL:
|
|
lod = GetRegister(instr.gpr20.Value() + bias_offset);
|
|
break;
|
|
default:
|
|
UNIMPLEMENTED_MSG("Unimplemented process mode={}", static_cast<u32>(process_mode));
|
|
break;
|
|
}
|
|
}
|
|
|
|
Node4 values;
|
|
for (u32 element = 0; element < values.size(); ++element) {
|
|
auto copy_coords = coords;
|
|
MetaTexture meta{sampler, array, depth_compare, aoffi, bias, lod, {}, element};
|
|
values[element] = Operation(read_method, meta, std::move(copy_coords));
|
|
}
|
|
|
|
return values;
|
|
}
|
|
|
|
Node4 ShaderIR::GetTexCode(Instruction instr, TextureType texture_type,
|
|
TextureProcessMode process_mode, bool depth_compare, bool is_array,
|
|
bool is_aoffi, std::optional<Tegra::Shader::Register> bindless_reg) {
|
|
const bool lod_bias_enabled{
|
|
(process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ)};
|
|
|
|
const bool is_bindless = bindless_reg.has_value();
|
|
|
|
u64 parameter_register = instr.gpr20.Value();
|
|
if (is_bindless) {
|
|
++parameter_register;
|
|
}
|
|
|
|
const u32 bias_lod_offset = (is_bindless ? 1 : 0);
|
|
if (lod_bias_enabled) {
|
|
++parameter_register;
|
|
}
|
|
|
|
const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement(
|
|
texture_type, depth_compare, is_array, lod_bias_enabled, 4, 5);
|
|
// If enabled arrays index is always stored in the gpr8 field
|
|
const u64 array_register = instr.gpr8.Value();
|
|
// First coordinate index is the gpr8 or gpr8 + 1 when arrays are used
|
|
const u64 coord_register = array_register + (is_array ? 1 : 0);
|
|
|
|
std::vector<Node> coords;
|
|
for (std::size_t i = 0; i < coord_count; ++i) {
|
|
coords.push_back(GetRegister(coord_register + i));
|
|
}
|
|
// 1D.DC in OpenGL the 2nd component is ignored.
|
|
if (depth_compare && !is_array && texture_type == TextureType::Texture1D) {
|
|
coords.push_back(Immediate(0.0f));
|
|
}
|
|
|
|
const Node array = is_array ? GetRegister(array_register) : nullptr;
|
|
|
|
std::vector<Node> aoffi;
|
|
if (is_aoffi) {
|
|
aoffi = GetAoffiCoordinates(GetRegister(parameter_register++), coord_count, false);
|
|
}
|
|
|
|
Node dc{};
|
|
if (depth_compare) {
|
|
// Depth is always stored in the register signaled by gpr20 or in the next register if lod
|
|
// or bias are used
|
|
dc = GetRegister(parameter_register++);
|
|
}
|
|
|
|
return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, bias_lod_offset,
|
|
aoffi, bindless_reg);
|
|
}
|
|
|
|
Node4 ShaderIR::GetTexsCode(Instruction instr, TextureType texture_type,
|
|
TextureProcessMode process_mode, bool depth_compare, bool is_array) {
|
|
const bool lod_bias_enabled =
|
|
(process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ);
|
|
|
|
const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement(
|
|
texture_type, depth_compare, is_array, lod_bias_enabled, 4, 4);
|
|
// If enabled arrays index is always stored in the gpr8 field
|
|
const u64 array_register = instr.gpr8.Value();
|
|
// First coordinate index is stored in gpr8 field or (gpr8 + 1) when arrays are used
|
|
const u64 coord_register = array_register + (is_array ? 1 : 0);
|
|
const u64 last_coord_register =
|
|
(is_array || !(lod_bias_enabled || depth_compare) || (coord_count > 2))
|
|
? static_cast<u64>(instr.gpr20.Value())
|
|
: coord_register + 1;
|
|
const u32 bias_offset = coord_count > 2 ? 1 : 0;
|
|
|
|
std::vector<Node> coords;
|
|
for (std::size_t i = 0; i < coord_count; ++i) {
|
|
const bool last = (i == (coord_count - 1)) && (coord_count > 1);
|
|
coords.push_back(GetRegister(last ? last_coord_register : coord_register + i));
|
|
}
|
|
|
|
const Node array = is_array ? GetRegister(array_register) : nullptr;
|
|
|
|
Node dc{};
|
|
if (depth_compare) {
|
|
// Depth is always stored in the register signaled by gpr20 or in the next register if lod
|
|
// or bias are used
|
|
const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0);
|
|
dc = GetRegister(depth_register);
|
|
}
|
|
|
|
return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, bias_offset, {},
|
|
{});
|
|
}
|
|
|
|
Node4 ShaderIR::GetTld4Code(Instruction instr, TextureType texture_type, bool depth_compare,
|
|
bool is_array, bool is_aoffi) {
|
|
const std::size_t coord_count = GetCoordCount(texture_type);
|
|
|
|
// If enabled arrays index is always stored in the gpr8 field
|
|
const u64 array_register = instr.gpr8.Value();
|
|
// First coordinate index is the gpr8 or gpr8 + 1 when arrays are used
|
|
const u64 coord_register = array_register + (is_array ? 1 : 0);
|
|
|
|
std::vector<Node> coords;
|
|
for (std::size_t i = 0; i < coord_count; ++i) {
|
|
coords.push_back(GetRegister(coord_register + i));
|
|
}
|
|
|
|
u64 parameter_register = instr.gpr20.Value();
|
|
std::vector<Node> aoffi;
|
|
if (is_aoffi) {
|
|
aoffi = GetAoffiCoordinates(GetRegister(parameter_register++), coord_count, true);
|
|
}
|
|
|
|
Node dc{};
|
|
if (depth_compare) {
|
|
dc = GetRegister(parameter_register++);
|
|
}
|
|
|
|
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, depth_compare);
|
|
|
|
Node4 values;
|
|
for (u32 element = 0; element < values.size(); ++element) {
|
|
auto coords_copy = coords;
|
|
MetaTexture meta{sampler, GetRegister(array_register), dc, aoffi, {}, {}, {}, element};
|
|
values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy));
|
|
}
|
|
|
|
return values;
|
|
}
|
|
|
|
Node4 ShaderIR::GetTldCode(Tegra::Shader::Instruction instr) {
|
|
const auto texture_type{instr.tld.texture_type};
|
|
const bool is_array{instr.tld.is_array};
|
|
const bool lod_enabled{instr.tld.GetTextureProcessMode() == TextureProcessMode::LL};
|
|
const std::size_t coord_count{GetCoordCount(texture_type)};
|
|
|
|
u64 gpr8_cursor{instr.gpr8.Value()};
|
|
const Node array_register{is_array ? GetRegister(gpr8_cursor++) : nullptr};
|
|
|
|
std::vector<Node> coords;
|
|
coords.reserve(coord_count);
|
|
for (std::size_t i = 0; i < coord_count; ++i) {
|
|
coords.push_back(GetRegister(gpr8_cursor++));
|
|
}
|
|
|
|
u64 gpr20_cursor{instr.gpr20.Value()};
|
|
// const Node bindless_register{is_bindless ? GetRegister(gpr20_cursor++) : nullptr};
|
|
const Node lod{lod_enabled ? GetRegister(gpr20_cursor++) : Immediate(0u)};
|
|
// const Node aoffi_register{is_aoffi ? GetRegister(gpr20_cursor++) : nullptr};
|
|
// const Node multisample{is_multisample ? GetRegister(gpr20_cursor++) : nullptr};
|
|
|
|
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, false);
|
|
|
|
Node4 values;
|
|
for (u32 element = 0; element < values.size(); ++element) {
|
|
auto coords_copy = coords;
|
|
MetaTexture meta{sampler, array_register, {}, {}, {}, lod, {}, element};
|
|
values[element] = Operation(OperationCode::TexelFetch, meta, std::move(coords_copy));
|
|
}
|
|
|
|
return values;
|
|
}
|
|
|
|
Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is_array) {
|
|
const std::size_t type_coord_count = GetCoordCount(texture_type);
|
|
const bool lod_enabled = instr.tlds.GetTextureProcessMode() == TextureProcessMode::LL;
|
|
|
|
// If enabled arrays index is always stored in the gpr8 field
|
|
const u64 array_register = instr.gpr8.Value();
|
|
// if is array gpr20 is used
|
|
const u64 coord_register = is_array ? instr.gpr20.Value() : instr.gpr8.Value();
|
|
|
|
const u64 last_coord_register =
|
|
((type_coord_count > 2) || (type_coord_count == 2 && !lod_enabled)) && !is_array
|
|
? static_cast<u64>(instr.gpr20.Value())
|
|
: coord_register + 1;
|
|
|
|
std::vector<Node> coords;
|
|
for (std::size_t i = 0; i < type_coord_count; ++i) {
|
|
const bool last = (i == (type_coord_count - 1)) && (type_coord_count > 1);
|
|
coords.push_back(GetRegister(last ? last_coord_register : coord_register + i));
|
|
}
|
|
|
|
const Node array = is_array ? GetRegister(array_register) : nullptr;
|
|
// When lod is used always is in gpr20
|
|
const Node lod = lod_enabled ? GetRegister(instr.gpr20) : Immediate(0);
|
|
|
|
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, false);
|
|
|
|
Node4 values;
|
|
for (u32 element = 0; element < values.size(); ++element) {
|
|
auto coords_copy = coords;
|
|
MetaTexture meta{sampler, array, {}, {}, {}, lod, {}, element};
|
|
values[element] = Operation(OperationCode::TexelFetch, meta, std::move(coords_copy));
|
|
}
|
|
return values;
|
|
}
|
|
|
|
std::tuple<std::size_t, std::size_t> ShaderIR::ValidateAndGetCoordinateElement(
|
|
TextureType texture_type, bool depth_compare, bool is_array, bool lod_bias_enabled,
|
|
std::size_t max_coords, std::size_t max_inputs) {
|
|
const std::size_t coord_count = GetCoordCount(texture_type);
|
|
|
|
std::size_t total_coord_count = coord_count + (is_array ? 1 : 0) + (depth_compare ? 1 : 0);
|
|
const std::size_t total_reg_count = total_coord_count + (lod_bias_enabled ? 1 : 0);
|
|
if (total_coord_count > max_coords || total_reg_count > max_inputs) {
|
|
UNIMPLEMENTED_MSG("Unsupported Texture operation");
|
|
total_coord_count = std::min(total_coord_count, max_coords);
|
|
}
|
|
// 1D.DC OpenGL is using a vec3 but 2nd component is ignored later.
|
|
total_coord_count +=
|
|
(depth_compare && !is_array && texture_type == TextureType::Texture1D) ? 1 : 0;
|
|
|
|
return {coord_count, total_coord_count};
|
|
}
|
|
|
|
std::vector<Node> ShaderIR::GetAoffiCoordinates(Node aoffi_reg, std::size_t coord_count,
|
|
bool is_tld4) {
|
|
const auto [coord_offsets, size, wrap_value,
|
|
diff_value] = [is_tld4]() -> std::tuple<std::array<u32, 3>, u32, s32, s32> {
|
|
if (is_tld4) {
|
|
return {{0, 8, 16}, 6, 32, 64};
|
|
} else {
|
|
return {{0, 4, 8}, 4, 8, 16};
|
|
}
|
|
}();
|
|
const u32 mask = (1U << size) - 1;
|
|
|
|
std::vector<Node> aoffi;
|
|
aoffi.reserve(coord_count);
|
|
|
|
const auto aoffi_immediate{
|
|
TrackImmediate(aoffi_reg, global_code, static_cast<s64>(global_code.size()))};
|
|
if (!aoffi_immediate) {
|
|
// Variable access, not supported on AMD.
|
|
LOG_WARNING(HW_GPU,
|
|
"AOFFI constant folding failed, some hardware might have graphical issues");
|
|
for (std::size_t coord = 0; coord < coord_count; ++coord) {
|
|
const Node value = BitfieldExtract(aoffi_reg, coord_offsets.at(coord), size);
|
|
const Node condition =
|
|
Operation(OperationCode::LogicalIGreaterEqual, value, Immediate(wrap_value));
|
|
const Node negative = Operation(OperationCode::IAdd, value, Immediate(-diff_value));
|
|
aoffi.push_back(Operation(OperationCode::Select, condition, negative, value));
|
|
}
|
|
return aoffi;
|
|
}
|
|
|
|
for (std::size_t coord = 0; coord < coord_count; ++coord) {
|
|
s32 value = (*aoffi_immediate >> coord_offsets.at(coord)) & mask;
|
|
if (value >= wrap_value) {
|
|
value -= diff_value;
|
|
}
|
|
aoffi.push_back(Immediate(value));
|
|
}
|
|
return aoffi;
|
|
}
|
|
|
|
} // namespace VideoCommon::Shader
|