// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include <algorithm> #include "common/common_types.h" #include "math.h" #include "pica.h" #include "rasterizer.h" #include "vertex_shader.h" #include "debug_utils/debug_utils.h" namespace Pica { namespace Rasterizer { static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) { u32* color_buffer = (u32*)Memory::GetPointer(registers.framebuffer.GetColorBufferAddress()); u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b(); // Assuming RGBA8 format until actual framebuffer format handling is implemented *(color_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value; } static u32 GetDepth(int x, int y) { u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress()); // Assuming 16-bit depth buffer format until actual format handling is implemented return *(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2); } static void SetDepth(int x, int y, u16 value) { u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress()); // Assuming 16-bit depth buffer format until actual format handling is implemented *(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value; } void ProcessTriangle(const VertexShader::OutputVertex& v0, const VertexShader::OutputVertex& v1, const VertexShader::OutputVertex& v2) { // NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values struct Fix12P4 { Fix12P4() {} Fix12P4(u16 val) : val(val) {} static u16 FracMask() { return 0xF; } static u16 IntMask() { return (u16)~0xF; } operator u16() const { return val; } bool operator < (const Fix12P4& oth) const { return (u16)*this < (u16)oth; } private: u16 val; }; // vertex positions in rasterizer coordinates auto FloatToFix = [](float24 flt) { return Fix12P4(flt.ToFloat32() * 16.0f); }; auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) { return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)}; }; Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos), ScreenToRasterizerCoordinates(v1.screenpos), ScreenToRasterizerCoordinates(v2.screenpos) }; // TODO: Proper scissor rect test! u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); min_x &= Fix12P4::IntMask(); min_y &= Fix12P4::IntMask(); max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask()); max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask()); // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias // values which are added to the barycentric coordinates w0, w1 and w2, respectively. // NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones... auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx, const Math::Vec2<Fix12P4>& line1, const Math::Vec2<Fix12P4>& line2) { if (line1.y == line2.y) { // just check if vertex is above us => bottom line parallel to x-axis return vtx.y < line1.y; } else { // check if vertex is on our left => right side // TODO: Not sure how likely this is to overflow return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y); } }; int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0; int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0; int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0; // TODO: Not sure if looping through x first might be faster for (u16 y = min_y; y < max_y; y += 0x10) { for (u16 x = min_x; x < max_x; x += 0x10) { // Calculate the barycentric coordinates w0, w1 and w2 auto orient2d = [](const Math::Vec2<Fix12P4>& vtx1, const Math::Vec2<Fix12P4>& vtx2, const Math::Vec2<Fix12P4>& vtx3) { const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0); const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0); // TODO: There is a very small chance this will overflow for sizeof(int) == 4 return Math::Cross(vec1, vec2).z; }; int w0 = bias0 + orient2d(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); int w1 = bias1 + orient2d(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); int w2 = bias2 + orient2d(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); int wsum = w0 + w1 + w2; // If current pixel is not covered by the current primitive if (w0 < 0 || w1 < 0 || w2 < 0) continue; // Perspective correct attribute interpolation: // Attribute values cannot be calculated by simple linear interpolation since // they are not linear in screen space. For example, when interpolating a // texture coordinate across two vertices, something simple like // u = (u0*w0 + u1*w1)/(w0+w1) // will not work. However, the attribute value divided by the // clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear // in screenspace. Hence, we can linearly interpolate these two independently and // calculate the interpolated attribute by dividing the results. // I.e. // u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) // one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) // u = u_over_w / one_over_w // // The generalization to three vertices is straightforward in baricentric coordinates. auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) { auto attr_over_w = Math::MakeVec(attr0 / v0.pos.w, attr1 / v1.pos.w, attr2 / v2.pos.w); auto w_inverse = Math::MakeVec(float24::FromFloat32(1.f) / v0.pos.w, float24::FromFloat32(1.f) / v1.pos.w, float24::FromFloat32(1.f) / v2.pos.w); auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(w0), float24::FromFloat32(w1), float24::FromFloat32(w2)); float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates); float24 interpolated_w_inverse = Math::Dot(w_inverse, baricentric_coordinates); return interpolated_attr_over_w / interpolated_w_inverse; }; Math::Vec4<u8> primary_color{ (u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255), (u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255), (u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255), (u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255) }; Math::Vec4<u8> texture_color{}; float24 u = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); float24 v = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); if (registers.texturing_enable) { // Images are split into 8x8 tiles. Each tile is composed of four 4x4 subtiles each // of which is composed of four 2x2 subtiles each of which is composed of four texels. // Each structure is embedded into the next-bigger one in a diagonal pattern, e.g. // texels are laid out in a 2x2 subtile like this: // 2 3 // 0 1 // // The full 8x8 tile has the texels arranged like this: // // 42 43 46 47 58 59 62 63 // 40 41 44 45 56 57 60 61 // 34 35 38 39 50 51 54 55 // 32 33 36 37 48 49 52 53 // 10 11 14 15 26 27 30 31 // 08 09 12 13 24 25 28 29 // 02 03 06 07 18 19 22 23 // 00 01 04 05 16 17 20 21 // TODO: This is currently hardcoded for RGB8 u32* texture_data = (u32*)Memory::GetPointer(registers.texture0.GetPhysicalAddress()); // TODO(neobrain): Not sure if this swizzling pattern is used for all textures. // To be flexible in case different but similar patterns are used, we keep this // somewhat inefficient code around for now. int s = (int)(u * float24::FromFloat32(registers.texture0.width)).ToFloat32(); int t = (int)(v * float24::FromFloat32(registers.texture0.height)).ToFloat32(); int texel_index_within_tile = 0; for (int block_size_index = 0; block_size_index < 3; ++block_size_index) { int sub_tile_width = 1 << block_size_index; int sub_tile_height = 1 << block_size_index; int sub_tile_index = (s & sub_tile_width) << block_size_index; sub_tile_index += 2 * ((t & sub_tile_height) << block_size_index); texel_index_within_tile += sub_tile_index; } const int block_width = 8; const int block_height = 8; int coarse_s = (s / block_width) * block_width; int coarse_t = (t / block_height) * block_height; const int row_stride = registers.texture0.width * 3; u8* source_ptr = (u8*)texture_data + coarse_s * block_height * 3 + coarse_t * row_stride + texel_index_within_tile * 3; texture_color.r() = source_ptr[2]; texture_color.g() = source_ptr[1]; texture_color.b() = source_ptr[0]; texture_color.a() = 0xFF; DebugUtils::DumpTexture(registers.texture0, (u8*)texture_data); } // Texture environment - consists of 6 stages of color and alpha combining. // // Color combiners take three input color values from some source (e.g. interpolated // vertex color, texture color, previous stage, etc), perform some very simple // operations on each of them (e.g. inversion) and then calculate the output color // with some basic arithmetic. Alpha combiners can be configured separately but work // analogously. Math::Vec4<u8> combiner_output; for (auto tev_stage : registers.GetTevStages()) { using Source = Regs::TevStageConfig::Source; using ColorModifier = Regs::TevStageConfig::ColorModifier; using AlphaModifier = Regs::TevStageConfig::AlphaModifier; using Operation = Regs::TevStageConfig::Operation; auto GetColorSource = [&](Source source) -> Math::Vec3<u8> { switch (source) { case Source::PrimaryColor: return primary_color.rgb(); case Source::Texture0: return texture_color.rgb(); case Source::Constant: return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b}; case Source::Previous: return combiner_output.rgb(); default: ERROR_LOG(GPU, "Unknown color combiner source %d\n", (int)source); return {}; } }; auto GetAlphaSource = [&](Source source) -> u8 { switch (source) { case Source::PrimaryColor: return primary_color.a(); case Source::Texture0: return texture_color.a(); case Source::Constant: return tev_stage.const_a; case Source::Previous: return combiner_output.a(); default: ERROR_LOG(GPU, "Unknown alpha combiner source %d\n", (int)source); return 0; } }; auto GetColorModifier = [](ColorModifier factor, const Math::Vec3<u8>& values) -> Math::Vec3<u8> { switch (factor) { case ColorModifier::SourceColor: return values; default: ERROR_LOG(GPU, "Unknown color factor %d\n", (int)factor); return {}; } }; auto GetAlphaModifier = [](AlphaModifier factor, u8 value) -> u8 { switch (factor) { case AlphaModifier::SourceAlpha: return value; default: ERROR_LOG(GPU, "Unknown color factor %d\n", (int)factor); return 0; } }; auto ColorCombine = [](Operation op, const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> { switch (op) { case Operation::Replace: return input[0]; case Operation::Modulate: return ((input[0] * input[1]) / 255).Cast<u8>(); default: ERROR_LOG(GPU, "Unknown color combiner operation %d\n", (int)op); return {}; } }; auto AlphaCombine = [](Operation op, const std::array<u8,3>& input) -> u8 { switch (op) { case Operation::Replace: return input[0]; case Operation::Modulate: return input[0] * input[1] / 255; default: ERROR_LOG(GPU, "Unknown alpha combiner operation %d\n", (int)op); return 0; } }; // color combiner // NOTE: Not sure if the alpha combiner might use the color output of the previous // stage as input. Hence, we currently don't directly write the result to // combiner_output.rgb(), but instead store it in a temporary variable until // alpha combining has been done. Math::Vec3<u8> color_result[3] = { GetColorModifier(tev_stage.color_modifier1, GetColorSource(tev_stage.color_source1)), GetColorModifier(tev_stage.color_modifier2, GetColorSource(tev_stage.color_source2)), GetColorModifier(tev_stage.color_modifier3, GetColorSource(tev_stage.color_source3)) }; auto color_output = ColorCombine(tev_stage.color_op, color_result); // alpha combiner std::array<u8,3> alpha_result = { GetAlphaModifier(tev_stage.alpha_modifier1, GetAlphaSource(tev_stage.alpha_source1)), GetAlphaModifier(tev_stage.alpha_modifier2, GetAlphaSource(tev_stage.alpha_source2)), GetAlphaModifier(tev_stage.alpha_modifier3, GetAlphaSource(tev_stage.alpha_source3)) }; auto alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result); combiner_output = Math::MakeVec(color_output, alpha_output); } // TODO: Not sure if the multiplication by 65535 has already been taken care // of when transforming to screen coordinates or not. u16 z = (u16)(((float)v0.screenpos[2].ToFloat32() * w0 + (float)v1.screenpos[2].ToFloat32() * w1 + (float)v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum); SetDepth(x >> 4, y >> 4, z); DrawPixel(x >> 4, y >> 4, combiner_output); } } } } // namespace Rasterizer } // namespace Pica