// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include <map> #include "common/common.h" #include "core/mem_map.h" #include "core/hw/hw.h" #include "hle/hle.h" #include "hle/config_mem.h" namespace Memory { std::map<u32, MemoryBlock> g_heap_map; std::map<u32, MemoryBlock> g_heap_gsp_map; std::map<u32, MemoryBlock> g_shared_map; /// Convert a physical address (or firmware-specific virtual address) to primary virtual address u32 _VirtualAddress(const u32 addr) { // Our memory interface read/write functions assume virtual addresses. Put any physical address // to virtual address translations here. This is obviously quite hacky... But we're not doing // any MMU emulation yet or anything if ((addr >= FCRAM_PADDR) && (addr < FCRAM_PADDR_END)) { return VirtualAddressFromPhysical_FCRAM(addr); // Virtual address mapping FW0B } else if ((addr >= FCRAM_VADDR_FW0B) && (addr < FCRAM_VADDR_FW0B_END)) { return VirtualAddressFromPhysical_FCRAM(addr); // Hardware IO // TODO(bunnei): FixMe // This isn't going to work... The physical address of HARDWARE_IO conflicts with the virtual // address of shared memory. //} else if ((addr >= HARDWARE_IO_PADDR) && (addr < HARDWARE_IO_PADDR_END)) { // return (addr + 0x0EB00000); } return addr; } template <typename T> inline void _Read(T &var, const u32 addr) { // TODO: Figure out the fastest order of tests for both read and write (they are probably different). // TODO: Make sure this represents the mirrors in a correct way. // Could just do a base-relative read, too.... TODO const u32 vaddr = _VirtualAddress(addr); // Kernel memory command buffer if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) { var = *((const T*)&g_kernel_mem[vaddr & KERNEL_MEMORY_MASK]); // Hardware I/O register reads // 0x10XXXXXX- is physical address space, 0x1EXXXXXX is virtual address space } else if ((vaddr >= HARDWARE_IO_VADDR) && (vaddr < HARDWARE_IO_VADDR_END)) { HW::Read<T>(var, vaddr); // ExeFS:/.code is loaded here } else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) { var = *((const T*)&g_exefs_code[vaddr & EXEFS_CODE_MASK]); // FCRAM - GSP heap } else if ((vaddr >= HEAP_GSP_VADDR) && (vaddr < HEAP_GSP_VADDR_END)) { var = *((const T*)&g_heap_gsp[vaddr & HEAP_GSP_MASK]); // FCRAM - application heap } else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) { var = *((const T*)&g_heap[vaddr & HEAP_MASK]); // Shared memory } else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) { var = *((const T*)&g_shared_mem[vaddr & SHARED_MEMORY_MASK]); // System memory } else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) { var = *((const T*)&g_system_mem[vaddr & SYSTEM_MEMORY_MASK]); // Config memory } else if ((vaddr >= CONFIG_MEMORY_VADDR) && (vaddr < CONFIG_MEMORY_VADDR_END)) { ConfigMem::Read<T>(var, vaddr); // VRAM } else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) { var = *((const T*)&g_vram[vaddr & VRAM_MASK]); } else { ERROR_LOG(MEMMAP, "unknown Read%d @ 0x%08X", sizeof(var) * 8, vaddr); } } template <typename T> inline void _Write(u32 addr, const T data) { u32 vaddr = _VirtualAddress(addr); // Kernel memory command buffer if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) { *(T*)&g_kernel_mem[vaddr & KERNEL_MEMORY_MASK] = data; // Hardware I/O register writes // 0x10XXXXXX- is physical address space, 0x1EXXXXXX is virtual address space } else if ((vaddr >= HARDWARE_IO_VADDR) && (vaddr < HARDWARE_IO_VADDR_END)) { HW::Write<T>(vaddr, data); // ExeFS:/.code is loaded here } else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) { *(T*)&g_exefs_code[vaddr & EXEFS_CODE_MASK] = data; // FCRAM - GSP heap } else if ((vaddr >= HEAP_GSP_VADDR) && (vaddr < HEAP_GSP_VADDR_END)) { *(T*)&g_heap_gsp[vaddr & HEAP_GSP_MASK] = data; // FCRAM - application heap } else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) { *(T*)&g_heap[vaddr & HEAP_MASK] = data; // Shared memory } else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) { *(T*)&g_shared_mem[vaddr & SHARED_MEMORY_MASK] = data; // System memory } else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) { *(T*)&g_system_mem[vaddr & SYSTEM_MEMORY_MASK] = data; // VRAM } else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) { *(T*)&g_vram[vaddr & VRAM_MASK] = data; //} else if ((vaddr & 0xFFF00000) == 0x1FF00000) { // _assert_msg_(MEMMAP, false, "umimplemented write to DSP memory"); //} else if ((vaddr & 0xFFFF0000) == 0x1FF80000) { // _assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory"); //} else if ((vaddr & 0xFFFFF000) == 0x1FF81000) { // _assert_msg_(MEMMAP, false, "umimplemented write to shared page"); // Error out... } else { ERROR_LOG(MEMMAP, "unknown Write%d 0x%08X @ 0x%08X", sizeof(data) * 8, data, vaddr); } } u8 *GetPointer(const u32 addr) { const u32 vaddr = _VirtualAddress(addr); // Kernel memory command buffer if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) { return g_kernel_mem + (vaddr & KERNEL_MEMORY_MASK); // ExeFS:/.code is loaded here } else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) { return g_exefs_code + (vaddr & EXEFS_CODE_MASK); // FCRAM - GSP heap } else if ((vaddr >= HEAP_GSP_VADDR) && (vaddr < HEAP_GSP_VADDR_END)) { return g_heap_gsp + (vaddr & HEAP_GSP_MASK); // FCRAM - application heap } else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) { return g_heap + (vaddr & HEAP_MASK); // Shared memory } else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) { return g_shared_mem + (vaddr & SHARED_MEMORY_MASK); // System memory } else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) { return g_system_mem + (vaddr & SYSTEM_MEMORY_MASK); // VRAM } else if ((vaddr > VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) { return g_vram + (vaddr & VRAM_MASK); } else { ERROR_LOG(MEMMAP, "unknown GetPointer @ 0x%08x", vaddr); return 0; } } /** * Maps a block of memory in shared memory * @param handle Handle to map memory block for * @param addr Address to map memory block to * @param permissions Memory map permissions */ u32 MapBlock_Shared(u32 handle, u32 addr,u32 permissions) { MemoryBlock block; block.handle = handle; block.base_address = addr; block.permissions = permissions; if (g_shared_map.size() > 0) { const MemoryBlock last_block = g_shared_map.rbegin()->second; block.address = last_block.address + last_block.size; } g_shared_map[block.GetVirtualAddress()] = block; return block.GetVirtualAddress(); } /** * Maps a block of memory on the heap * @param size Size of block in bytes * @param operation Memory map operation type * @param flags Memory allocation flags */ u32 MapBlock_Heap(u32 size, u32 operation, u32 permissions) { MemoryBlock block; block.base_address = HEAP_VADDR; block.size = size; block.operation = operation; block.permissions = permissions; if (g_heap_map.size() > 0) { const MemoryBlock last_block = g_heap_map.rbegin()->second; block.address = last_block.address + last_block.size; } g_heap_map[block.GetVirtualAddress()] = block; return block.GetVirtualAddress(); } /** * Maps a block of memory on the GSP heap * @param size Size of block in bytes * @param operation Memory map operation type * @param flags Memory allocation flags */ u32 MapBlock_HeapGSP(u32 size, u32 operation, u32 permissions) { MemoryBlock block; block.base_address = HEAP_GSP_VADDR; block.size = size; block.operation = operation; block.permissions = permissions; if (g_heap_gsp_map.size() > 0) { const MemoryBlock last_block = g_heap_gsp_map.rbegin()->second; block.address = last_block.address + last_block.size; } g_heap_gsp_map[block.GetVirtualAddress()] = block; return block.GetVirtualAddress(); } u8 Read8(const u32 addr) { u8 _var = 0; _Read<u8>(_var, addr); return (u8)_var; } u16 Read16(const u32 addr) { u16_le _var = 0; _Read<u16_le>(_var, addr); return (u16)_var; } u32 Read32(const u32 addr) { u32_le _var = 0; _Read<u32_le>(_var, addr); return _var; } u64 Read64(const u32 addr) { u64_le _var = 0; _Read<u64_le>(_var, addr); return _var; } u32 Read8_ZX(const u32 addr) { return (u32)Read8(addr); } u32 Read16_ZX(const u32 addr) { return (u32)Read16(addr); } void Write8(const u32 addr, const u8 data) { _Write<u8>(addr, data); } void Write16(const u32 addr, const u16 data) { _Write<u16_le>(addr, data); } void Write32(const u32 addr, const u32 data) { _Write<u32_le>(addr, data); } void Write64(const u32 addr, const u64 data) { _Write<u64_le>(addr, data); } void WriteBlock(const u32 addr, const u8* data, const int size) { int offset = 0; while (offset < (size & ~3)) Write32(addr + offset, *(u32*)&data[offset += 4]); if (size & 2) Write16(addr + offset, *(u16*)&data[offset += 2]); if (size & 1) Write8(addr + offset, data[offset]); } } // namespace