// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include <cinttypes> #include <cstring> #include "common/assert.h" #include "core/core.h" #include "core/core_timing.h" #include "video_core/debug_utils/debug_utils.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/memory_manager.h" #include "video_core/rasterizer_interface.h" #include "video_core/textures/texture.h" namespace Tegra::Engines { /// First register id that is actually a Macro call. constexpr u32 MacroRegistersStart = 0xE00; Maxwell3D::Maxwell3D(Core::System& system, VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager) : system{system}, rasterizer{rasterizer}, memory_manager{memory_manager}, macro_interpreter{ *this} { InitializeRegisterDefaults(); } void Maxwell3D::InitializeRegisterDefaults() { // Initializes registers to their default values - what games expect them to be at boot. This is // for certain registers that may not be explicitly set by games. // Reset all registers to zero std::memset(®s, 0, sizeof(regs)); // Depth range near/far is not always set, but is expected to be the default 0.0f, 1.0f. This is // needed for ARMS. for (std::size_t viewport{}; viewport < Regs::NumViewports; ++viewport) { regs.viewports[viewport].depth_range_near = 0.0f; regs.viewports[viewport].depth_range_far = 1.0f; } // Doom and Bomberman seems to use the uninitialized registers and just enable blend // so initialize blend registers with sane values regs.blend.equation_rgb = Regs::Blend::Equation::Add; regs.blend.factor_source_rgb = Regs::Blend::Factor::One; regs.blend.factor_dest_rgb = Regs::Blend::Factor::Zero; regs.blend.equation_a = Regs::Blend::Equation::Add; regs.blend.factor_source_a = Regs::Blend::Factor::One; regs.blend.factor_dest_a = Regs::Blend::Factor::Zero; for (std::size_t blend_index = 0; blend_index < Regs::NumRenderTargets; blend_index++) { regs.independent_blend[blend_index].equation_rgb = Regs::Blend::Equation::Add; regs.independent_blend[blend_index].factor_source_rgb = Regs::Blend::Factor::One; regs.independent_blend[blend_index].factor_dest_rgb = Regs::Blend::Factor::Zero; regs.independent_blend[blend_index].equation_a = Regs::Blend::Equation::Add; regs.independent_blend[blend_index].factor_source_a = Regs::Blend::Factor::One; regs.independent_blend[blend_index].factor_dest_a = Regs::Blend::Factor::Zero; } regs.stencil_front_op_fail = Regs::StencilOp::Keep; regs.stencil_front_op_zfail = Regs::StencilOp::Keep; regs.stencil_front_op_zpass = Regs::StencilOp::Keep; regs.stencil_front_func_func = Regs::ComparisonOp::Always; regs.stencil_front_func_mask = 0xFFFFFFFF; regs.stencil_front_mask = 0xFFFFFFFF; regs.stencil_two_side_enable = 1; regs.stencil_back_op_fail = Regs::StencilOp::Keep; regs.stencil_back_op_zfail = Regs::StencilOp::Keep; regs.stencil_back_op_zpass = Regs::StencilOp::Keep; regs.stencil_back_func_func = Regs::ComparisonOp::Always; regs.stencil_back_func_mask = 0xFFFFFFFF; regs.stencil_back_mask = 0xFFFFFFFF; // TODO(Rodrigo): Most games do not set a point size. I think this is a case of a // register carrying a default value. Assume it's OpenGL's default (1). regs.point_size = 1.0f; // TODO(bunnei): Some games do not initialize the color masks (e.g. Sonic Mania). Assuming a // default of enabled fixes rendering here. for (std::size_t color_mask = 0; color_mask < Regs::NumRenderTargets; color_mask++) { regs.color_mask[color_mask].R.Assign(1); regs.color_mask[color_mask].G.Assign(1); regs.color_mask[color_mask].B.Assign(1); regs.color_mask[color_mask].A.Assign(1); } // Commercial games seem to assume this value is enabled and nouveau sets this value manually. regs.rt_separate_frag_data = 1; } void Maxwell3D::CallMacroMethod(u32 method, std::vector<u32> parameters) { // Reset the current macro. executing_macro = 0; // Lookup the macro offset const u32 entry{(method - MacroRegistersStart) >> 1}; const auto& search{macro_offsets.find(entry)}; if (search == macro_offsets.end()) { LOG_CRITICAL(HW_GPU, "macro not found for method 0x{:X}!", method); UNREACHABLE(); return; } // Execute the current macro. macro_interpreter.Execute(search->second, std::move(parameters)); } void Maxwell3D::CallMethod(const GPU::MethodCall& method_call) { auto debug_context = system.GetGPUDebugContext(); const u32 method = method_call.method; // It is an error to write to a register other than the current macro's ARG register before it // has finished execution. if (executing_macro != 0) { ASSERT(method == executing_macro + 1); } // Methods after 0xE00 are special, they're actually triggers for some microcode that was // uploaded to the GPU during initialization. if (method >= MacroRegistersStart) { // We're trying to execute a macro if (executing_macro == 0) { // A macro call must begin by writing the macro method's register, not its argument. ASSERT_MSG((method % 2) == 0, "Can't start macro execution by writing to the ARGS register"); executing_macro = method; } macro_params.push_back(method_call.argument); // Call the macro when there are no more parameters in the command buffer if (method_call.IsLastCall()) { CallMacroMethod(executing_macro, std::move(macro_params)); } return; } ASSERT_MSG(method < Regs::NUM_REGS, "Invalid Maxwell3D register, increase the size of the Regs structure"); if (debug_context) { debug_context->OnEvent(Tegra::DebugContext::Event::MaxwellCommandLoaded, nullptr); } if (regs.reg_array[method] != method_call.argument) { regs.reg_array[method] = method_call.argument; // Color buffers constexpr u32 first_rt_reg = MAXWELL3D_REG_INDEX(rt); constexpr u32 registers_per_rt = sizeof(regs.rt[0]) / sizeof(u32); if (method >= first_rt_reg && method < first_rt_reg + registers_per_rt * Regs::NumRenderTargets) { const std::size_t rt_index = (method - first_rt_reg) / registers_per_rt; dirty_flags.color_buffer.set(rt_index); } // Zeta buffer constexpr u32 registers_in_zeta = sizeof(regs.zeta) / sizeof(u32); if (method == MAXWELL3D_REG_INDEX(zeta_enable) || method == MAXWELL3D_REG_INDEX(zeta_width) || method == MAXWELL3D_REG_INDEX(zeta_height) || (method >= MAXWELL3D_REG_INDEX(zeta) && method < MAXWELL3D_REG_INDEX(zeta) + registers_in_zeta)) { dirty_flags.zeta_buffer = true; } // Shader constexpr u32 shader_registers_count = sizeof(regs.shader_config[0]) * Regs::MaxShaderProgram / sizeof(u32); if (method >= MAXWELL3D_REG_INDEX(shader_config[0]) && method < MAXWELL3D_REG_INDEX(shader_config[0]) + shader_registers_count) { dirty_flags.shaders = true; } // Vertex format if (method >= MAXWELL3D_REG_INDEX(vertex_attrib_format) && method < MAXWELL3D_REG_INDEX(vertex_attrib_format) + regs.vertex_attrib_format.size()) { dirty_flags.vertex_attrib_format = true; } // Vertex buffer if (method >= MAXWELL3D_REG_INDEX(vertex_array) && method < MAXWELL3D_REG_INDEX(vertex_array) + 4 * 32) { dirty_flags.vertex_array.set((method - MAXWELL3D_REG_INDEX(vertex_array)) >> 2); } else if (method >= MAXWELL3D_REG_INDEX(vertex_array_limit) && method < MAXWELL3D_REG_INDEX(vertex_array_limit) + 2 * 32) { dirty_flags.vertex_array.set((method - MAXWELL3D_REG_INDEX(vertex_array_limit)) >> 1); } else if (method >= MAXWELL3D_REG_INDEX(instanced_arrays) && method < MAXWELL3D_REG_INDEX(instanced_arrays) + 32) { dirty_flags.vertex_array.set(method - MAXWELL3D_REG_INDEX(instanced_arrays)); } } switch (method) { case MAXWELL3D_REG_INDEX(macros.data): { ProcessMacroUpload(method_call.argument); break; } case MAXWELL3D_REG_INDEX(macros.bind): { ProcessMacroBind(method_call.argument); break; } case MAXWELL3D_REG_INDEX(const_buffer.cb_data[0]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[1]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[2]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[3]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[4]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[5]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[6]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[7]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[8]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[9]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[10]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[11]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[12]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[13]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[14]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[15]): { ProcessCBData(method_call.argument); break; } case MAXWELL3D_REG_INDEX(cb_bind[0].raw_config): { ProcessCBBind(Regs::ShaderStage::Vertex); break; } case MAXWELL3D_REG_INDEX(cb_bind[1].raw_config): { ProcessCBBind(Regs::ShaderStage::TesselationControl); break; } case MAXWELL3D_REG_INDEX(cb_bind[2].raw_config): { ProcessCBBind(Regs::ShaderStage::TesselationEval); break; } case MAXWELL3D_REG_INDEX(cb_bind[3].raw_config): { ProcessCBBind(Regs::ShaderStage::Geometry); break; } case MAXWELL3D_REG_INDEX(cb_bind[4].raw_config): { ProcessCBBind(Regs::ShaderStage::Fragment); break; } case MAXWELL3D_REG_INDEX(draw.vertex_end_gl): { DrawArrays(); break; } case MAXWELL3D_REG_INDEX(clear_buffers): { ProcessClearBuffers(); break; } case MAXWELL3D_REG_INDEX(query.query_get): { ProcessQueryGet(); break; } case MAXWELL3D_REG_INDEX(sync_info): { ProcessSyncPoint(); break; } default: break; } if (debug_context) { debug_context->OnEvent(Tegra::DebugContext::Event::MaxwellCommandProcessed, nullptr); } } void Maxwell3D::ProcessMacroUpload(u32 data) { ASSERT_MSG(regs.macros.upload_address < macro_memory.size(), "upload_address exceeded macro_memory size!"); macro_memory[regs.macros.upload_address++] = data; } void Maxwell3D::ProcessMacroBind(u32 data) { macro_offsets[regs.macros.entry] = data; } void Maxwell3D::ProcessQueryGet() { const GPUVAddr sequence_address{regs.query.QueryAddress()}; // Since the sequence address is given as a GPU VAddr, we have to convert it to an application // VAddr before writing. // TODO(Subv): Support the other query units. ASSERT_MSG(regs.query.query_get.unit == Regs::QueryUnit::Crop, "Units other than CROP are unimplemented"); u64 result = 0; // TODO(Subv): Support the other query variables switch (regs.query.query_get.select) { case Regs::QuerySelect::Zero: // This seems to actually write the query sequence to the query address. result = regs.query.query_sequence; break; default: UNIMPLEMENTED_MSG("Unimplemented query select type {}", static_cast<u32>(regs.query.query_get.select.Value())); } // TODO(Subv): Research and implement how query sync conditions work. struct LongQueryResult { u64_le value; u64_le timestamp; }; static_assert(sizeof(LongQueryResult) == 16, "LongQueryResult has wrong size"); switch (regs.query.query_get.mode) { case Regs::QueryMode::Write: case Regs::QueryMode::Write2: { u32 sequence = regs.query.query_sequence; if (regs.query.query_get.short_query) { // Write the current query sequence to the sequence address. // TODO(Subv): Find out what happens if you use a long query type but mark it as a short // query. memory_manager.Write<u32>(sequence_address, sequence); } else { // Write the 128-bit result structure in long mode. Note: We emulate an infinitely fast // GPU, this command may actually take a while to complete in real hardware due to GPU // wait queues. LongQueryResult query_result{}; query_result.value = result; // TODO(Subv): Generate a real GPU timestamp and write it here instead of CoreTiming query_result.timestamp = system.CoreTiming().GetTicks(); memory_manager.WriteBlock(sequence_address, &query_result, sizeof(query_result)); } dirty_flags.OnMemoryWrite(); break; } default: UNIMPLEMENTED_MSG("Query mode {} not implemented", static_cast<u32>(regs.query.query_get.mode.Value())); } } void Maxwell3D::ProcessSyncPoint() { const u32 sync_point = regs.sync_info.sync_point.Value(); const u32 increment = regs.sync_info.increment.Value(); const u32 cache_flush = regs.sync_info.unknown.Value(); LOG_DEBUG(HW_GPU, "Syncpoint set {}, increment: {}, unk: {}", sync_point, increment, cache_flush); } void Maxwell3D::DrawArrays() { LOG_DEBUG(HW_GPU, "called, topology={}, count={}", static_cast<u32>(regs.draw.topology.Value()), regs.vertex_buffer.count); ASSERT_MSG(!(regs.index_array.count && regs.vertex_buffer.count), "Both indexed and direct?"); auto debug_context = system.GetGPUDebugContext(); if (debug_context) { debug_context->OnEvent(Tegra::DebugContext::Event::IncomingPrimitiveBatch, nullptr); } // Both instance configuration registers can not be set at the same time. ASSERT_MSG(!regs.draw.instance_next || !regs.draw.instance_cont, "Illegal combination of instancing parameters"); if (regs.draw.instance_next) { // Increment the current instance *before* drawing. state.current_instance += 1; } else if (!regs.draw.instance_cont) { // Reset the current instance to 0. state.current_instance = 0; } const bool is_indexed{regs.index_array.count && !regs.vertex_buffer.count}; rasterizer.AccelerateDrawBatch(is_indexed); if (debug_context) { debug_context->OnEvent(Tegra::DebugContext::Event::FinishedPrimitiveBatch, nullptr); } // TODO(bunnei): Below, we reset vertex count so that we can use these registers to determine if // the game is trying to draw indexed or direct mode. This needs to be verified on HW still - // it's possible that it is incorrect and that there is some other register used to specify the // drawing mode. if (is_indexed) { regs.index_array.count = 0; } else { regs.vertex_buffer.count = 0; } } void Maxwell3D::ProcessCBBind(Regs::ShaderStage stage) { // Bind the buffer currently in CB_ADDRESS to the specified index in the desired shader stage. auto& shader = state.shader_stages[static_cast<std::size_t>(stage)]; auto& bind_data = regs.cb_bind[static_cast<std::size_t>(stage)]; auto& buffer = shader.const_buffers[bind_data.index]; ASSERT(bind_data.index < Regs::MaxConstBuffers); buffer.enabled = bind_data.valid.Value() != 0; buffer.index = bind_data.index; buffer.address = regs.const_buffer.BufferAddress(); buffer.size = regs.const_buffer.cb_size; } void Maxwell3D::ProcessCBData(u32 value) { // Write the input value to the current const buffer at the current position. const GPUVAddr buffer_address = regs.const_buffer.BufferAddress(); ASSERT(buffer_address != 0); // Don't allow writing past the end of the buffer. ASSERT(regs.const_buffer.cb_pos + sizeof(u32) <= regs.const_buffer.cb_size); const GPUVAddr address{buffer_address + regs.const_buffer.cb_pos}; u8* ptr{memory_manager.GetPointer(address)}; rasterizer.InvalidateRegion(ToCacheAddr(ptr), sizeof(u32)); memory_manager.Write<u32>(address, value); dirty_flags.OnMemoryWrite(); // Increment the current buffer position. regs.const_buffer.cb_pos = regs.const_buffer.cb_pos + 4; } Texture::TICEntry Maxwell3D::GetTICEntry(u32 tic_index) const { const GPUVAddr tic_address_gpu{regs.tic.TICAddress() + tic_index * sizeof(Texture::TICEntry)}; Texture::TICEntry tic_entry; memory_manager.ReadBlockUnsafe(tic_address_gpu, &tic_entry, sizeof(Texture::TICEntry)); ASSERT_MSG(tic_entry.header_version == Texture::TICHeaderVersion::BlockLinear || tic_entry.header_version == Texture::TICHeaderVersion::Pitch, "TIC versions other than BlockLinear or Pitch are unimplemented"); const auto r_type = tic_entry.r_type.Value(); const auto g_type = tic_entry.g_type.Value(); const auto b_type = tic_entry.b_type.Value(); const auto a_type = tic_entry.a_type.Value(); // TODO(Subv): Different data types for separate components are not supported ASSERT(r_type == g_type && r_type == b_type && r_type == a_type); return tic_entry; } Texture::TSCEntry Maxwell3D::GetTSCEntry(u32 tsc_index) const { const GPUVAddr tsc_address_gpu{regs.tsc.TSCAddress() + tsc_index * sizeof(Texture::TSCEntry)}; Texture::TSCEntry tsc_entry; memory_manager.ReadBlockUnsafe(tsc_address_gpu, &tsc_entry, sizeof(Texture::TSCEntry)); return tsc_entry; } std::vector<Texture::FullTextureInfo> Maxwell3D::GetStageTextures(Regs::ShaderStage stage) const { std::vector<Texture::FullTextureInfo> textures; auto& fragment_shader = state.shader_stages[static_cast<std::size_t>(stage)]; auto& tex_info_buffer = fragment_shader.const_buffers[regs.tex_cb_index]; ASSERT(tex_info_buffer.enabled && tex_info_buffer.address != 0); GPUVAddr tex_info_buffer_end = tex_info_buffer.address + tex_info_buffer.size; // Offset into the texture constbuffer where the texture info begins. static constexpr std::size_t TextureInfoOffset = 0x20; for (GPUVAddr current_texture = tex_info_buffer.address + TextureInfoOffset; current_texture < tex_info_buffer_end; current_texture += sizeof(Texture::TextureHandle)) { const Texture::TextureHandle tex_handle{memory_manager.Read<u32>(current_texture)}; Texture::FullTextureInfo tex_info{}; // TODO(Subv): Use the shader to determine which textures are actually accessed. tex_info.index = static_cast<u32>(current_texture - tex_info_buffer.address - TextureInfoOffset) / sizeof(Texture::TextureHandle); // Load the TIC data. auto tic_entry = GetTICEntry(tex_handle.tic_id); // TODO(Subv): Workaround for BitField's move constructor being deleted. std::memcpy(&tex_info.tic, &tic_entry, sizeof(tic_entry)); // Load the TSC data auto tsc_entry = GetTSCEntry(tex_handle.tsc_id); // TODO(Subv): Workaround for BitField's move constructor being deleted. std::memcpy(&tex_info.tsc, &tsc_entry, sizeof(tsc_entry)); textures.push_back(tex_info); } return textures; } Texture::FullTextureInfo Maxwell3D::GetTextureInfo(const Texture::TextureHandle tex_handle, std::size_t offset) const { Texture::FullTextureInfo tex_info{}; tex_info.index = static_cast<u32>(offset); // Load the TIC data. auto tic_entry = GetTICEntry(tex_handle.tic_id); // TODO(Subv): Workaround for BitField's move constructor being deleted. std::memcpy(&tex_info.tic, &tic_entry, sizeof(tic_entry)); // Load the TSC data auto tsc_entry = GetTSCEntry(tex_handle.tsc_id); // TODO(Subv): Workaround for BitField's move constructor being deleted. std::memcpy(&tex_info.tsc, &tsc_entry, sizeof(tsc_entry)); return tex_info; } Texture::FullTextureInfo Maxwell3D::GetStageTexture(Regs::ShaderStage stage, std::size_t offset) const { const auto& shader = state.shader_stages[static_cast<std::size_t>(stage)]; const auto& tex_info_buffer = shader.const_buffers[regs.tex_cb_index]; ASSERT(tex_info_buffer.enabled && tex_info_buffer.address != 0); const GPUVAddr tex_info_address = tex_info_buffer.address + offset * sizeof(Texture::TextureHandle); ASSERT(tex_info_address < tex_info_buffer.address + tex_info_buffer.size); const Texture::TextureHandle tex_handle{memory_manager.Read<u32>(tex_info_address)}; return GetTextureInfo(tex_handle, offset); } u32 Maxwell3D::GetRegisterValue(u32 method) const { ASSERT_MSG(method < Regs::NUM_REGS, "Invalid Maxwell3D register"); return regs.reg_array[method]; } void Maxwell3D::ProcessClearBuffers() { ASSERT(regs.clear_buffers.R == regs.clear_buffers.G && regs.clear_buffers.R == regs.clear_buffers.B && regs.clear_buffers.R == regs.clear_buffers.A); rasterizer.Clear(); } u32 Maxwell3D::AccessConstBuffer32(Regs::ShaderStage stage, u64 const_buffer, u64 offset) const { const auto& shader_stage = state.shader_stages[static_cast<std::size_t>(stage)]; const auto& buffer = shader_stage.const_buffers[const_buffer]; u32 result; std::memcpy(&result, memory_manager.GetPointer(buffer.address + offset), sizeof(u32)); return result; } } // namespace Tegra::Engines