// Copyright 2018 yuzu emulator team // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include "common/alignment.h" #include "common/assert.h" #include "common/logging/log.h" #include "core/core.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/vm_manager.h" #include "core/memory.h" #include "video_core/gpu.h" #include "video_core/memory_manager.h" #include "video_core/rasterizer_interface.h" namespace Tegra { MemoryManager::MemoryManager(Core::System& system, VideoCore::RasterizerInterface& rasterizer) : rasterizer{rasterizer}, system{system} { std::fill(page_table.pointers.begin(), page_table.pointers.end(), nullptr); std::fill(page_table.attributes.begin(), page_table.attributes.end(), Common::PageType::Unmapped); page_table.Resize(address_space_width); // Initialize the map with a single free region covering the entire managed space. VirtualMemoryArea initial_vma; initial_vma.size = address_space_end; vma_map.emplace(initial_vma.base, initial_vma); UpdatePageTableForVMA(initial_vma); } MemoryManager::~MemoryManager() = default; GPUVAddr MemoryManager::AllocateSpace(u64 size, u64 align) { const u64 aligned_size{Common::AlignUp(size, page_size)}; const GPUVAddr gpu_addr{FindFreeRegion(address_space_base, aligned_size)}; AllocateMemory(gpu_addr, 0, aligned_size); return gpu_addr; } GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) { const u64 aligned_size{Common::AlignUp(size, page_size)}; AllocateMemory(gpu_addr, 0, aligned_size); return gpu_addr; } GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, u64 size) { const u64 aligned_size{Common::AlignUp(size, page_size)}; const GPUVAddr gpu_addr{FindFreeRegion(address_space_base, aligned_size)}; MapBackingMemory(gpu_addr, system.Memory().GetPointer(cpu_addr), aligned_size, cpu_addr); ASSERT(system.CurrentProcess() ->VMManager() .SetMemoryAttribute(cpu_addr, size, Kernel::MemoryAttribute::DeviceMapped, Kernel::MemoryAttribute::DeviceMapped) .IsSuccess()); return gpu_addr; } GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size) { ASSERT((gpu_addr & page_mask) == 0); const u64 aligned_size{Common::AlignUp(size, page_size)}; MapBackingMemory(gpu_addr, system.Memory().GetPointer(cpu_addr), aligned_size, cpu_addr); ASSERT(system.CurrentProcess() ->VMManager() .SetMemoryAttribute(cpu_addr, size, Kernel::MemoryAttribute::DeviceMapped, Kernel::MemoryAttribute::DeviceMapped) .IsSuccess()); return gpu_addr; } GPUVAddr MemoryManager::UnmapBuffer(GPUVAddr gpu_addr, u64 size) { ASSERT((gpu_addr & page_mask) == 0); const u64 aligned_size{Common::AlignUp(size, page_size)}; const CacheAddr cache_addr{ToCacheAddr(GetPointer(gpu_addr))}; const auto cpu_addr = GpuToCpuAddress(gpu_addr); ASSERT(cpu_addr); // Flush and invalidate through the GPU interface, to be asynchronous if possible. system.GPU().FlushAndInvalidateRegion(cache_addr, aligned_size); UnmapRange(gpu_addr, aligned_size); ASSERT(system.CurrentProcess() ->VMManager() .SetMemoryAttribute(cpu_addr.value(), size, Kernel::MemoryAttribute::DeviceMapped, Kernel::MemoryAttribute::None) .IsSuccess()); return gpu_addr; } GPUVAddr MemoryManager::FindFreeRegion(GPUVAddr region_start, u64 size) const { // Find the first Free VMA. const VMAHandle vma_handle{ std::find_if(vma_map.begin(), vma_map.end(), [region_start, size](const auto& vma) { if (vma.second.type != VirtualMemoryArea::Type::Unmapped) { return false; } const VAddr vma_end{vma.second.base + vma.second.size}; return vma_end > region_start && vma_end >= region_start + size; })}; if (vma_handle == vma_map.end()) { return {}; } return std::max(region_start, vma_handle->second.base); } bool MemoryManager::IsAddressValid(GPUVAddr addr) const { return (addr >> page_bits) < page_table.pointers.size(); } std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr) const { if (!IsAddressValid(addr)) { return {}; } const VAddr cpu_addr{page_table.backing_addr[addr >> page_bits]}; if (cpu_addr) { return cpu_addr + (addr & page_mask); } return {}; } template <typename T> T MemoryManager::Read(GPUVAddr addr) const { if (!IsAddressValid(addr)) { return {}; } const u8* page_pointer{page_table.pointers[addr >> page_bits]}; if (page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block T value; std::memcpy(&value, &page_pointer[addr & page_mask], sizeof(T)); return value; } switch (page_table.attributes[addr >> page_bits]) { case Common::PageType::Unmapped: LOG_ERROR(HW_GPU, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, addr); return 0; case Common::PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", addr); break; default: UNREACHABLE(); } return {}; } template <typename T> void MemoryManager::Write(GPUVAddr addr, T data) { if (!IsAddressValid(addr)) { return; } u8* page_pointer{page_table.pointers[addr >> page_bits]}; if (page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block std::memcpy(&page_pointer[addr & page_mask], &data, sizeof(T)); return; } switch (page_table.attributes[addr >> page_bits]) { case Common::PageType::Unmapped: LOG_ERROR(HW_GPU, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8, static_cast<u32>(data), addr); return; case Common::PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", addr); break; default: UNREACHABLE(); } } template u8 MemoryManager::Read<u8>(GPUVAddr addr) const; template u16 MemoryManager::Read<u16>(GPUVAddr addr) const; template u32 MemoryManager::Read<u32>(GPUVAddr addr) const; template u64 MemoryManager::Read<u64>(GPUVAddr addr) const; template void MemoryManager::Write<u8>(GPUVAddr addr, u8 data); template void MemoryManager::Write<u16>(GPUVAddr addr, u16 data); template void MemoryManager::Write<u32>(GPUVAddr addr, u32 data); template void MemoryManager::Write<u64>(GPUVAddr addr, u64 data); u8* MemoryManager::GetPointer(GPUVAddr addr) { if (!IsAddressValid(addr)) { return {}; } u8* const page_pointer{page_table.pointers[addr >> page_bits]}; if (page_pointer != nullptr) { return page_pointer + (addr & page_mask); } LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr); return {}; } const u8* MemoryManager::GetPointer(GPUVAddr addr) const { if (!IsAddressValid(addr)) { return {}; } const u8* const page_pointer{page_table.pointers[addr >> page_bits]}; if (page_pointer != nullptr) { return page_pointer + (addr & page_mask); } LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr); return {}; } bool MemoryManager::IsBlockContinuous(const GPUVAddr start, const std::size_t size) const { const std::size_t inner_size = size - 1; const GPUVAddr end = start + inner_size; const auto host_ptr_start = reinterpret_cast<std::uintptr_t>(GetPointer(start)); const auto host_ptr_end = reinterpret_cast<std::uintptr_t>(GetPointer(end)); const auto range = static_cast<std::size_t>(host_ptr_end - host_ptr_start); return range == inner_size; } void MemoryManager::ReadBlock(GPUVAddr src_addr, void* dest_buffer, const std::size_t size) const { std::size_t remaining_size{size}; std::size_t page_index{src_addr >> page_bits}; std::size_t page_offset{src_addr & page_mask}; while (remaining_size > 0) { const std::size_t copy_amount{ std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)}; switch (page_table.attributes[page_index]) { case Common::PageType::Memory: { const u8* src_ptr{page_table.pointers[page_index] + page_offset}; // Flush must happen on the rasterizer interface, such that memory is always synchronous // when it is read (even when in asynchronous GPU mode). Fixes Dead Cells title menu. rasterizer.FlushRegion(ToCacheAddr(src_ptr), copy_amount); std::memcpy(dest_buffer, src_ptr, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount; remaining_size -= copy_amount; } } void MemoryManager::ReadBlockUnsafe(GPUVAddr src_addr, void* dest_buffer, const std::size_t size) const { std::size_t remaining_size{size}; std::size_t page_index{src_addr >> page_bits}; std::size_t page_offset{src_addr & page_mask}; while (remaining_size > 0) { const std::size_t copy_amount{ std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)}; const u8* page_pointer = page_table.pointers[page_index]; if (page_pointer) { const u8* src_ptr{page_pointer + page_offset}; std::memcpy(dest_buffer, src_ptr, copy_amount); } else { std::memset(dest_buffer, 0, copy_amount); } page_index++; page_offset = 0; dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount; remaining_size -= copy_amount; } } void MemoryManager::WriteBlock(GPUVAddr dest_addr, const void* src_buffer, const std::size_t size) { std::size_t remaining_size{size}; std::size_t page_index{dest_addr >> page_bits}; std::size_t page_offset{dest_addr & page_mask}; while (remaining_size > 0) { const std::size_t copy_amount{ std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)}; switch (page_table.attributes[page_index]) { case Common::PageType::Memory: { u8* dest_ptr{page_table.pointers[page_index] + page_offset}; // Invalidate must happen on the rasterizer interface, such that memory is always // synchronous when it is written (even when in asynchronous GPU mode). rasterizer.InvalidateRegion(ToCacheAddr(dest_ptr), copy_amount); std::memcpy(dest_ptr, src_buffer, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; src_buffer = static_cast<const u8*>(src_buffer) + copy_amount; remaining_size -= copy_amount; } } void MemoryManager::WriteBlockUnsafe(GPUVAddr dest_addr, const void* src_buffer, const std::size_t size) { std::size_t remaining_size{size}; std::size_t page_index{dest_addr >> page_bits}; std::size_t page_offset{dest_addr & page_mask}; while (remaining_size > 0) { const std::size_t copy_amount{ std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)}; u8* page_pointer = page_table.pointers[page_index]; if (page_pointer) { u8* dest_ptr{page_pointer + page_offset}; std::memcpy(dest_ptr, src_buffer, copy_amount); } page_index++; page_offset = 0; src_buffer = static_cast<const u8*>(src_buffer) + copy_amount; remaining_size -= copy_amount; } } void MemoryManager::CopyBlock(GPUVAddr dest_addr, GPUVAddr src_addr, const std::size_t size) { std::size_t remaining_size{size}; std::size_t page_index{src_addr >> page_bits}; std::size_t page_offset{src_addr & page_mask}; while (remaining_size > 0) { const std::size_t copy_amount{ std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)}; switch (page_table.attributes[page_index]) { case Common::PageType::Memory: { // Flush must happen on the rasterizer interface, such that memory is always synchronous // when it is copied (even when in asynchronous GPU mode). const u8* src_ptr{page_table.pointers[page_index] + page_offset}; rasterizer.FlushRegion(ToCacheAddr(src_ptr), copy_amount); WriteBlock(dest_addr, src_ptr, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_addr += static_cast<VAddr>(copy_amount); src_addr += static_cast<VAddr>(copy_amount); remaining_size -= copy_amount; } } void MemoryManager::CopyBlockUnsafe(GPUVAddr dest_addr, GPUVAddr src_addr, const std::size_t size) { std::vector<u8> tmp_buffer(size); ReadBlockUnsafe(src_addr, tmp_buffer.data(), size); WriteBlockUnsafe(dest_addr, tmp_buffer.data(), size); } void MemoryManager::MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type, VAddr backing_addr) { LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size, (base + size) * page_size); const VAddr end{base + size}; ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}", base + page_table.pointers.size()); std::fill(page_table.attributes.begin() + base, page_table.attributes.begin() + end, type); if (memory == nullptr) { std::fill(page_table.pointers.begin() + base, page_table.pointers.begin() + end, memory); std::fill(page_table.backing_addr.begin() + base, page_table.backing_addr.begin() + end, backing_addr); } else { while (base != end) { page_table.pointers[base] = memory; page_table.backing_addr[base] = backing_addr; base += 1; memory += page_size; backing_addr += page_size; } } } void MemoryManager::MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr) { ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base); MapPages(base / page_size, size / page_size, target, Common::PageType::Memory, backing_addr); } void MemoryManager::UnmapRegion(GPUVAddr base, u64 size) { ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base); MapPages(base / page_size, size / page_size, nullptr, Common::PageType::Unmapped); } bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const { ASSERT(base + size == next.base); if (type != next.type) { return {}; } if (type == VirtualMemoryArea::Type::Allocated && (offset + size != next.offset)) { return {}; } if (type == VirtualMemoryArea::Type::Mapped && backing_memory + size != next.backing_memory) { return {}; } return true; } MemoryManager::VMAHandle MemoryManager::FindVMA(GPUVAddr target) const { if (target >= address_space_end) { return vma_map.end(); } else { return std::prev(vma_map.upper_bound(target)); } } MemoryManager::VMAIter MemoryManager::Allocate(VMAIter vma_handle) { VirtualMemoryArea& vma{vma_handle->second}; vma.type = VirtualMemoryArea::Type::Allocated; vma.backing_addr = 0; vma.backing_memory = {}; UpdatePageTableForVMA(vma); return MergeAdjacent(vma_handle); } MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset, u64 size) { // This is the appropriately sized VMA that will turn into our allocation. VMAIter vma_handle{CarveVMA(target, size)}; VirtualMemoryArea& vma{vma_handle->second}; ASSERT(vma.size == size); vma.offset = offset; return Allocate(vma_handle); } MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size, VAddr backing_addr) { // This is the appropriately sized VMA that will turn into our allocation. VMAIter vma_handle{CarveVMA(target, size)}; VirtualMemoryArea& vma{vma_handle->second}; ASSERT(vma.size == size); vma.type = VirtualMemoryArea::Type::Mapped; vma.backing_memory = memory; vma.backing_addr = backing_addr; UpdatePageTableForVMA(vma); return MergeAdjacent(vma_handle); } void MemoryManager::UnmapRange(GPUVAddr target, u64 size) { VMAIter vma{CarveVMARange(target, size)}; const VAddr target_end{target + size}; const VMAIter end{vma_map.end()}; // The comparison against the end of the range must be done using addresses since VMAs can be // merged during this process, causing invalidation of the iterators. while (vma != end && vma->second.base < target_end) { // Unmapped ranges return to allocated state and can be reused // This behavior is used by Super Mario Odyssey, Sonic Forces, and likely other games vma = std::next(Allocate(vma)); } ASSERT(FindVMA(target)->second.size >= size); } MemoryManager::VMAIter MemoryManager::StripIterConstness(const VMAHandle& iter) { // This uses a neat C++ trick to convert a const_iterator to a regular iterator, given // non-const access to its container. return vma_map.erase(iter, iter); // Erases an empty range of elements } MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) { ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size); ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: 0x{:016X}", base); VMAIter vma_handle{StripIterConstness(FindVMA(base))}; if (vma_handle == vma_map.end()) { // Target address is outside the managed range return {}; } const VirtualMemoryArea& vma{vma_handle->second}; if (vma.type == VirtualMemoryArea::Type::Mapped) { // Region is already allocated return vma_handle; } const VAddr start_in_vma{base - vma.base}; const VAddr end_in_vma{start_in_vma + size}; ASSERT_MSG(end_in_vma <= vma.size, "region size 0x{:016X} is less than required size 0x{:016X}", vma.size, end_in_vma); if (end_in_vma < vma.size) { // Split VMA at the end of the allocated region SplitVMA(vma_handle, end_in_vma); } if (start_in_vma != 0) { // Split VMA at the start of the allocated region vma_handle = SplitVMA(vma_handle, start_in_vma); } return vma_handle; } MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) { ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size); ASSERT_MSG((target & page_mask) == 0, "non-page aligned base: 0x{:016X}", target); const VAddr target_end{target + size}; ASSERT(target_end >= target); ASSERT(size > 0); VMAIter begin_vma{StripIterConstness(FindVMA(target))}; const VMAIter i_end{vma_map.lower_bound(target_end)}; if (std::any_of(begin_vma, i_end, [](const auto& entry) { return entry.second.type == VirtualMemoryArea::Type::Unmapped; })) { return {}; } if (target != begin_vma->second.base) { begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base); } VMAIter end_vma{StripIterConstness(FindVMA(target_end))}; if (end_vma != vma_map.end() && target_end != end_vma->second.base) { end_vma = SplitVMA(end_vma, target_end - end_vma->second.base); } return begin_vma; } MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) { VirtualMemoryArea& old_vma{vma_handle->second}; VirtualMemoryArea new_vma{old_vma}; // Make a copy of the VMA // For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably // a bug. This restriction might be removed later. ASSERT(offset_in_vma < old_vma.size); ASSERT(offset_in_vma > 0); old_vma.size = offset_in_vma; new_vma.base += offset_in_vma; new_vma.size -= offset_in_vma; switch (new_vma.type) { case VirtualMemoryArea::Type::Unmapped: break; case VirtualMemoryArea::Type::Allocated: new_vma.offset += offset_in_vma; break; case VirtualMemoryArea::Type::Mapped: new_vma.backing_memory += offset_in_vma; break; } ASSERT(old_vma.CanBeMergedWith(new_vma)); return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma); } MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) { const VMAIter next_vma{std::next(iter)}; if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) { iter->second.size += next_vma->second.size; vma_map.erase(next_vma); } if (iter != vma_map.begin()) { VMAIter prev_vma{std::prev(iter)}; if (prev_vma->second.CanBeMergedWith(iter->second)) { prev_vma->second.size += iter->second.size; vma_map.erase(iter); iter = prev_vma; } } return iter; } void MemoryManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) { switch (vma.type) { case VirtualMemoryArea::Type::Unmapped: UnmapRegion(vma.base, vma.size); break; case VirtualMemoryArea::Type::Allocated: MapMemoryRegion(vma.base, vma.size, nullptr, vma.backing_addr); break; case VirtualMemoryArea::Type::Mapped: MapMemoryRegion(vma.base, vma.size, vma.backing_memory, vma.backing_addr); break; } } } // namespace Tegra