// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include <algorithm> #include <cstring> #include <optional> #include <utility> #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/swap.h" #include "core/arm/arm_interface.h" #include "core/core.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/vm_manager.h" #include "core/hle/lock.h" #include "core/memory.h" #include "core/memory_setup.h" #include "video_core/renderer_base.h" namespace Memory { static PageTable* current_page_table = nullptr; void SetCurrentPageTable(PageTable* page_table) { current_page_table = page_table; auto& system = Core::System::GetInstance(); if (system.IsPoweredOn()) { system.ArmInterface(0).PageTableChanged(); system.ArmInterface(1).PageTableChanged(); system.ArmInterface(2).PageTableChanged(); system.ArmInterface(3).PageTableChanged(); } } PageTable* GetCurrentPageTable() { return current_page_table; } PageTable::PageTable() = default; PageTable::PageTable(std::size_t address_space_width_in_bits) { Resize(address_space_width_in_bits); } PageTable::~PageTable() = default; void PageTable::Resize(std::size_t address_space_width_in_bits) { const std::size_t num_page_table_entries = 1ULL << (address_space_width_in_bits - PAGE_BITS); pointers.resize(num_page_table_entries); attributes.resize(num_page_table_entries); // The default is a 39-bit address space, which causes an initial 1GB allocation size. If the // vector size is subsequently decreased (via resize), the vector might not automatically // actually reallocate/resize its underlying allocation, which wastes up to ~800 MB for // 36-bit titles. Call shrink_to_fit to reduce capacity to what's actually in use. pointers.shrink_to_fit(); attributes.shrink_to_fit(); } static void MapPages(PageTable& page_table, VAddr base, u64 size, u8* memory, PageType type) { LOG_DEBUG(HW_Memory, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * PAGE_SIZE, (base + size) * PAGE_SIZE); RasterizerFlushVirtualRegion(base << PAGE_BITS, size * PAGE_SIZE, FlushMode::FlushAndInvalidate); VAddr end = base + size; while (base != end) { ASSERT_MSG(base < page_table.pointers.size(), "out of range mapping at {:016X}", base); page_table.attributes[base] = type; page_table.pointers[base] = memory; base += 1; if (memory != nullptr) memory += PAGE_SIZE; } } void MapMemoryRegion(PageTable& page_table, VAddr base, u64 size, u8* target) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory); } void MapIoRegion(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer mmio_handler) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special); auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1); SpecialRegion region{SpecialRegion::Type::IODevice, std::move(mmio_handler)}; page_table.special_regions.add(std::make_pair(interval, std::set<SpecialRegion>{region})); } void UnmapRegion(PageTable& page_table, VAddr base, u64 size) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped); auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1); page_table.special_regions.erase(interval); } void AddDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) { auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1); SpecialRegion region{SpecialRegion::Type::DebugHook, std::move(hook)}; page_table.special_regions.add(std::make_pair(interval, std::set<SpecialRegion>{region})); } void RemoveDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) { auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1); SpecialRegion region{SpecialRegion::Type::DebugHook, std::move(hook)}; page_table.special_regions.subtract(std::make_pair(interval, std::set<SpecialRegion>{region})); } /** * Gets a pointer to the exact memory at the virtual address (i.e. not page aligned) * using a VMA from the current process */ static u8* GetPointerFromVMA(const Kernel::Process& process, VAddr vaddr) { const auto& vm_manager = process.VMManager(); const auto it = vm_manager.FindVMA(vaddr); DEBUG_ASSERT(vm_manager.IsValidHandle(it)); u8* direct_pointer = nullptr; const auto& vma = it->second; switch (vma.type) { case Kernel::VMAType::AllocatedMemoryBlock: direct_pointer = vma.backing_block->data() + vma.offset; break; case Kernel::VMAType::BackingMemory: direct_pointer = vma.backing_memory; break; case Kernel::VMAType::Free: return nullptr; default: UNREACHABLE(); } return direct_pointer + (vaddr - vma.base); } /** * Gets a pointer to the exact memory at the virtual address (i.e. not page aligned) * using a VMA from the current process. */ static u8* GetPointerFromVMA(VAddr vaddr) { return GetPointerFromVMA(*Core::CurrentProcess(), vaddr); } template <typename T> T Read(const VAddr vaddr) { const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block T value; std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T)); return value; } // The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock); PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr); return 0; case PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr); break; case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Flush); T value; std::memcpy(&value, GetPointerFromVMA(vaddr), sizeof(T)); return value; } default: UNREACHABLE(); } return {}; } template <typename T> void Write(const VAddr vaddr, const T data) { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T)); return; } // The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock); PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8, static_cast<u32>(data), vaddr); return; case PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr); break; case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate); std::memcpy(GetPointerFromVMA(vaddr), &data, sizeof(T)); break; } default: UNREACHABLE(); } } bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) { const auto& page_table = process.VMManager().page_table; const u8* page_pointer = page_table.pointers[vaddr >> PAGE_BITS]; if (page_pointer) return true; if (page_table.attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) return true; if (page_table.attributes[vaddr >> PAGE_BITS] != PageType::Special) return false; return false; } bool IsValidVirtualAddress(const VAddr vaddr) { return IsValidVirtualAddress(*Core::CurrentProcess(), vaddr); } bool IsKernelVirtualAddress(const VAddr vaddr) { return KERNEL_REGION_VADDR <= vaddr && vaddr < KERNEL_REGION_END; } u8* GetPointer(const VAddr vaddr) { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { return page_pointer + (vaddr & PAGE_MASK); } if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) { return GetPointerFromVMA(vaddr); } LOG_ERROR(HW_Memory, "Unknown GetPointer @ 0x{:016X}", vaddr); return nullptr; } std::string ReadCString(VAddr vaddr, std::size_t max_length) { std::string string; string.reserve(max_length); for (std::size_t i = 0; i < max_length; ++i) { char c = Read8(vaddr); if (c == '\0') break; string.push_back(c); ++vaddr; } string.shrink_to_fit(); return string; } void RasterizerMarkRegionCached(VAddr vaddr, u64 size, bool cached) { if (vaddr == 0) { return; } // Iterate over a contiguous CPU address space, which corresponds to the specified GPU address // space, marking the region as un/cached. The region is marked un/cached at a granularity of // CPU pages, hence why we iterate on a CPU page basis (note: GPU page size is different). This // assumes the specified GPU address region is contiguous as well. u64 num_pages = ((vaddr + size - 1) >> PAGE_BITS) - (vaddr >> PAGE_BITS) + 1; for (unsigned i = 0; i < num_pages; ++i, vaddr += PAGE_SIZE) { PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS]; if (cached) { // Switch page type to cached if now cached switch (page_type) { case PageType::Unmapped: // It is not necessary for a process to have this region mapped into its address // space, for example, a system module need not have a VRAM mapping. break; case PageType::Memory: page_type = PageType::RasterizerCachedMemory; current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr; break; case PageType::RasterizerCachedMemory: // There can be more than one GPU region mapped per CPU region, so it's common that // this area is already marked as cached. break; default: UNREACHABLE(); } } else { // Switch page type to uncached if now uncached switch (page_type) { case PageType::Unmapped: // It is not necessary for a process to have this region mapped into its address // space, for example, a system module need not have a VRAM mapping. break; case PageType::Memory: // There can be more than one GPU region mapped per CPU region, so it's common that // this area is already unmarked as cached. break; case PageType::RasterizerCachedMemory: { u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK); if (pointer == nullptr) { // It's possible that this function has been called while updating the pagetable // after unmapping a VMA. In that case the underlying VMA will no longer exist, // and we should just leave the pagetable entry blank. page_type = PageType::Unmapped; } else { page_type = PageType::Memory; current_page_table->pointers[vaddr >> PAGE_BITS] = pointer; } break; } default: UNREACHABLE(); } } } } void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode) { auto& system_instance = Core::System::GetInstance(); // Since pages are unmapped on shutdown after video core is shutdown, the renderer may be // null here if (!system_instance.IsPoweredOn()) { return; } const VAddr end = start + size; const auto CheckRegion = [&](VAddr region_start, VAddr region_end) { if (start >= region_end || end <= region_start) { // No overlap with region return; } const VAddr overlap_start = std::max(start, region_start); const VAddr overlap_end = std::min(end, region_end); const VAddr overlap_size = overlap_end - overlap_start; auto& rasterizer = system_instance.Renderer().Rasterizer(); switch (mode) { case FlushMode::Flush: rasterizer.FlushRegion(overlap_start, overlap_size); break; case FlushMode::Invalidate: rasterizer.InvalidateRegion(overlap_start, overlap_size); break; case FlushMode::FlushAndInvalidate: rasterizer.FlushAndInvalidateRegion(overlap_start, overlap_size); break; } }; const auto& vm_manager = Core::CurrentProcess()->VMManager(); CheckRegion(vm_manager.GetCodeRegionBaseAddress(), vm_manager.GetCodeRegionEndAddress()); CheckRegion(vm_manager.GetHeapRegionBaseAddress(), vm_manager.GetHeapRegionEndAddress()); } u8 Read8(const VAddr addr) { return Read<u8>(addr); } u16 Read16(const VAddr addr) { return Read<u16_le>(addr); } u32 Read32(const VAddr addr) { return Read<u32_le>(addr); } u64 Read64(const VAddr addr) { return Read<u64_le>(addr); } void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = src_addr >> PAGE_BITS; std::size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, src_addr, size); std::memset(dest_buffer, 0, copy_amount); break; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); const u8* src_ptr = page_table.pointers[page_index] + page_offset; std::memcpy(dest_buffer, src_ptr, copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount), FlushMode::Flush); std::memcpy(dest_buffer, GetPointerFromVMA(process, current_vaddr), copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount; remaining_size -= copy_amount; } } void ReadBlock(const VAddr src_addr, void* dest_buffer, const std::size_t size) { ReadBlock(*Core::CurrentProcess(), src_addr, dest_buffer, size); } void Write8(const VAddr addr, const u8 data) { Write<u8>(addr, data); } void Write16(const VAddr addr, const u16 data) { Write<u16_le>(addr, data); } void Write32(const VAddr addr, const u32 data) { Write<u32_le>(addr, data); } void Write64(const VAddr addr, const u64 data) { Write<u64_le>(addr, data); } void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = dest_addr >> PAGE_BITS; std::size_t page_offset = dest_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, dest_addr, size); break; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); u8* dest_ptr = page_table.pointers[page_index] + page_offset; std::memcpy(dest_ptr, src_buffer, copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount), FlushMode::Invalidate); std::memcpy(GetPointerFromVMA(process, current_vaddr), src_buffer, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; src_buffer = static_cast<const u8*>(src_buffer) + copy_amount; remaining_size -= copy_amount; } } void WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) { WriteBlock(*Core::CurrentProcess(), dest_addr, src_buffer, size); } void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = dest_addr >> PAGE_BITS; std::size_t page_offset = dest_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped ZeroBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, dest_addr, size); break; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); u8* dest_ptr = page_table.pointers[page_index] + page_offset; std::memset(dest_ptr, 0, copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount), FlushMode::Invalidate); std::memset(GetPointerFromVMA(process, current_vaddr), 0, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; remaining_size -= copy_amount; } } void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = src_addr >> PAGE_BITS; std::size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped CopyBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, src_addr, size); ZeroBlock(process, dest_addr, copy_amount); break; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); const u8* src_ptr = page_table.pointers[page_index] + page_offset; WriteBlock(process, dest_addr, src_ptr, copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount), FlushMode::Flush); WriteBlock(process, dest_addr, GetPointerFromVMA(process, current_vaddr), copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_addr += static_cast<VAddr>(copy_amount); src_addr += static_cast<VAddr>(copy_amount); remaining_size -= copy_amount; } } void CopyBlock(VAddr dest_addr, VAddr src_addr, std::size_t size) { CopyBlock(*Core::CurrentProcess(), dest_addr, src_addr, size); } } // namespace Memory