// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include <algorithm> #include <cstring> #include <optional> #include <utility> #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/page_table.h" #include "common/swap.h" #include "core/arm/arm_interface.h" #include "core/core.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/vm_manager.h" #include "core/memory.h" #include "core/memory_setup.h" #include "video_core/gpu.h" namespace Memory { static Common::PageTable* current_page_table = nullptr; // Implementation class used to keep the specifics of the memory subsystem hidden // from outside classes. This also allows modification to the internals of the memory // subsystem without needing to rebuild all files that make use of the memory interface. struct Memory::Impl { explicit Impl(Core::System& system_) : system{system_} {} Core::System& system; }; Memory::Memory(Core::System& system) : impl{std::make_unique<Impl>(system)} {} Memory::~Memory() = default; void SetCurrentPageTable(Kernel::Process& process) { current_page_table = &process.VMManager().page_table; const std::size_t address_space_width = process.VMManager().GetAddressSpaceWidth(); auto& system = Core::System::GetInstance(); system.ArmInterface(0).PageTableChanged(*current_page_table, address_space_width); system.ArmInterface(1).PageTableChanged(*current_page_table, address_space_width); system.ArmInterface(2).PageTableChanged(*current_page_table, address_space_width); system.ArmInterface(3).PageTableChanged(*current_page_table, address_space_width); } static void MapPages(Common::PageTable& page_table, VAddr base, u64 size, u8* memory, Common::PageType type) { LOG_DEBUG(HW_Memory, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * PAGE_SIZE, (base + size) * PAGE_SIZE); // During boot, current_page_table might not be set yet, in which case we need not flush if (Core::System::GetInstance().IsPoweredOn()) { auto& gpu = Core::System::GetInstance().GPU(); for (u64 i = 0; i < size; i++) { const auto page = base + i; if (page_table.attributes[page] == Common::PageType::RasterizerCachedMemory) { gpu.FlushAndInvalidateRegion(page << PAGE_BITS, PAGE_SIZE); } } } VAddr end = base + size; ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}", base + page_table.pointers.size()); std::fill(page_table.attributes.begin() + base, page_table.attributes.begin() + end, type); if (memory == nullptr) { std::fill(page_table.pointers.begin() + base, page_table.pointers.begin() + end, memory); } else { while (base != end) { page_table.pointers[base] = memory; base += 1; memory += PAGE_SIZE; } } } void MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, u8* target) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, Common::PageType::Memory); } void MapIoRegion(Common::PageTable& page_table, VAddr base, u64 size, Common::MemoryHookPointer mmio_handler) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, Common::PageType::Special); auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1); Common::SpecialRegion region{Common::SpecialRegion::Type::IODevice, std::move(mmio_handler)}; page_table.special_regions.add( std::make_pair(interval, std::set<Common::SpecialRegion>{region})); } void UnmapRegion(Common::PageTable& page_table, VAddr base, u64 size) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, Common::PageType::Unmapped); auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1); page_table.special_regions.erase(interval); } void AddDebugHook(Common::PageTable& page_table, VAddr base, u64 size, Common::MemoryHookPointer hook) { auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1); Common::SpecialRegion region{Common::SpecialRegion::Type::DebugHook, std::move(hook)}; page_table.special_regions.add( std::make_pair(interval, std::set<Common::SpecialRegion>{region})); } void RemoveDebugHook(Common::PageTable& page_table, VAddr base, u64 size, Common::MemoryHookPointer hook) { auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1); Common::SpecialRegion region{Common::SpecialRegion::Type::DebugHook, std::move(hook)}; page_table.special_regions.subtract( std::make_pair(interval, std::set<Common::SpecialRegion>{region})); } /** * Gets a pointer to the exact memory at the virtual address (i.e. not page aligned) * using a VMA from the current process */ static u8* GetPointerFromVMA(const Kernel::Process& process, VAddr vaddr) { const auto& vm_manager = process.VMManager(); const auto it = vm_manager.FindVMA(vaddr); DEBUG_ASSERT(vm_manager.IsValidHandle(it)); u8* direct_pointer = nullptr; const auto& vma = it->second; switch (vma.type) { case Kernel::VMAType::AllocatedMemoryBlock: direct_pointer = vma.backing_block->data() + vma.offset; break; case Kernel::VMAType::BackingMemory: direct_pointer = vma.backing_memory; break; case Kernel::VMAType::Free: return nullptr; default: UNREACHABLE(); } return direct_pointer + (vaddr - vma.base); } /** * Gets a pointer to the exact memory at the virtual address (i.e. not page aligned) * using a VMA from the current process. */ static u8* GetPointerFromVMA(VAddr vaddr) { return GetPointerFromVMA(*Core::System::GetInstance().CurrentProcess(), vaddr); } template <typename T> T Read(const VAddr vaddr) { const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block T value; std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T)); return value; } Common::PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case Common::PageType::Unmapped: LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr); return 0; case Common::PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr); break; case Common::PageType::RasterizerCachedMemory: { auto host_ptr{GetPointerFromVMA(vaddr)}; Core::System::GetInstance().GPU().FlushRegion(ToCacheAddr(host_ptr), sizeof(T)); T value; std::memcpy(&value, host_ptr, sizeof(T)); return value; } default: UNREACHABLE(); } return {}; } template <typename T> void Write(const VAddr vaddr, const T data) { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T)); return; } Common::PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case Common::PageType::Unmapped: LOG_ERROR(HW_Memory, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8, static_cast<u32>(data), vaddr); return; case Common::PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr); break; case Common::PageType::RasterizerCachedMemory: { auto host_ptr{GetPointerFromVMA(vaddr)}; Core::System::GetInstance().GPU().InvalidateRegion(ToCacheAddr(host_ptr), sizeof(T)); std::memcpy(host_ptr, &data, sizeof(T)); break; } default: UNREACHABLE(); } } bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) { const auto& page_table = process.VMManager().page_table; const u8* page_pointer = page_table.pointers[vaddr >> PAGE_BITS]; if (page_pointer) return true; if (page_table.attributes[vaddr >> PAGE_BITS] == Common::PageType::RasterizerCachedMemory) return true; if (page_table.attributes[vaddr >> PAGE_BITS] != Common::PageType::Special) return false; return false; } bool IsValidVirtualAddress(const VAddr vaddr) { return IsValidVirtualAddress(*Core::System::GetInstance().CurrentProcess(), vaddr); } bool IsKernelVirtualAddress(const VAddr vaddr) { return KERNEL_REGION_VADDR <= vaddr && vaddr < KERNEL_REGION_END; } u8* GetPointer(const VAddr vaddr) { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { return page_pointer + (vaddr & PAGE_MASK); } if (current_page_table->attributes[vaddr >> PAGE_BITS] == Common::PageType::RasterizerCachedMemory) { return GetPointerFromVMA(vaddr); } LOG_ERROR(HW_Memory, "Unknown GetPointer @ 0x{:016X}", vaddr); return nullptr; } std::string ReadCString(VAddr vaddr, std::size_t max_length) { std::string string; string.reserve(max_length); for (std::size_t i = 0; i < max_length; ++i) { char c = Read8(vaddr); if (c == '\0') break; string.push_back(c); ++vaddr; } string.shrink_to_fit(); return string; } void RasterizerMarkRegionCached(VAddr vaddr, u64 size, bool cached) { if (vaddr == 0) { return; } // Iterate over a contiguous CPU address space, which corresponds to the specified GPU address // space, marking the region as un/cached. The region is marked un/cached at a granularity of // CPU pages, hence why we iterate on a CPU page basis (note: GPU page size is different). This // assumes the specified GPU address region is contiguous as well. u64 num_pages = ((vaddr + size - 1) >> PAGE_BITS) - (vaddr >> PAGE_BITS) + 1; for (unsigned i = 0; i < num_pages; ++i, vaddr += PAGE_SIZE) { Common::PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS]; if (cached) { // Switch page type to cached if now cached switch (page_type) { case Common::PageType::Unmapped: // It is not necessary for a process to have this region mapped into its address // space, for example, a system module need not have a VRAM mapping. break; case Common::PageType::Memory: page_type = Common::PageType::RasterizerCachedMemory; current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr; break; case Common::PageType::RasterizerCachedMemory: // There can be more than one GPU region mapped per CPU region, so it's common that // this area is already marked as cached. break; default: UNREACHABLE(); } } else { // Switch page type to uncached if now uncached switch (page_type) { case Common::PageType::Unmapped: // It is not necessary for a process to have this region mapped into its address // space, for example, a system module need not have a VRAM mapping. break; case Common::PageType::Memory: // There can be more than one GPU region mapped per CPU region, so it's common that // this area is already unmarked as cached. break; case Common::PageType::RasterizerCachedMemory: { u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK); if (pointer == nullptr) { // It's possible that this function has been called while updating the pagetable // after unmapping a VMA. In that case the underlying VMA will no longer exist, // and we should just leave the pagetable entry blank. page_type = Common::PageType::Unmapped; } else { page_type = Common::PageType::Memory; current_page_table->pointers[vaddr >> PAGE_BITS] = pointer; } break; } default: UNREACHABLE(); } } } } u8 Read8(const VAddr addr) { return Read<u8>(addr); } u16 Read16(const VAddr addr) { return Read<u16_le>(addr); } u32 Read32(const VAddr addr) { return Read<u32_le>(addr); } u64 Read64(const VAddr addr) { return Read<u64_le>(addr); } void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = src_addr >> PAGE_BITS; std::size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case Common::PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, src_addr, size); std::memset(dest_buffer, 0, copy_amount); break; } case Common::PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); const u8* src_ptr = page_table.pointers[page_index] + page_offset; std::memcpy(dest_buffer, src_ptr, copy_amount); break; } case Common::PageType::RasterizerCachedMemory: { const auto& host_ptr{GetPointerFromVMA(process, current_vaddr)}; Core::System::GetInstance().GPU().FlushRegion(ToCacheAddr(host_ptr), copy_amount); std::memcpy(dest_buffer, host_ptr, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount; remaining_size -= copy_amount; } } void ReadBlock(const VAddr src_addr, void* dest_buffer, const std::size_t size) { ReadBlock(*Core::System::GetInstance().CurrentProcess(), src_addr, dest_buffer, size); } void Write8(const VAddr addr, const u8 data) { Write<u8>(addr, data); } void Write16(const VAddr addr, const u16 data) { Write<u16_le>(addr, data); } void Write32(const VAddr addr, const u32 data) { Write<u32_le>(addr, data); } void Write64(const VAddr addr, const u64 data) { Write<u64_le>(addr, data); } void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = dest_addr >> PAGE_BITS; std::size_t page_offset = dest_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case Common::PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, dest_addr, size); break; } case Common::PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); u8* dest_ptr = page_table.pointers[page_index] + page_offset; std::memcpy(dest_ptr, src_buffer, copy_amount); break; } case Common::PageType::RasterizerCachedMemory: { const auto& host_ptr{GetPointerFromVMA(process, current_vaddr)}; Core::System::GetInstance().GPU().InvalidateRegion(ToCacheAddr(host_ptr), copy_amount); std::memcpy(host_ptr, src_buffer, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; src_buffer = static_cast<const u8*>(src_buffer) + copy_amount; remaining_size -= copy_amount; } } void WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) { WriteBlock(*Core::System::GetInstance().CurrentProcess(), dest_addr, src_buffer, size); } void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = dest_addr >> PAGE_BITS; std::size_t page_offset = dest_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case Common::PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped ZeroBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, dest_addr, size); break; } case Common::PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); u8* dest_ptr = page_table.pointers[page_index] + page_offset; std::memset(dest_ptr, 0, copy_amount); break; } case Common::PageType::RasterizerCachedMemory: { const auto& host_ptr{GetPointerFromVMA(process, current_vaddr)}; Core::System::GetInstance().GPU().InvalidateRegion(ToCacheAddr(host_ptr), copy_amount); std::memset(host_ptr, 0, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; remaining_size -= copy_amount; } } void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = src_addr >> PAGE_BITS; std::size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case Common::PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped CopyBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, src_addr, size); ZeroBlock(process, dest_addr, copy_amount); break; } case Common::PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); const u8* src_ptr = page_table.pointers[page_index] + page_offset; WriteBlock(process, dest_addr, src_ptr, copy_amount); break; } case Common::PageType::RasterizerCachedMemory: { const auto& host_ptr{GetPointerFromVMA(process, current_vaddr)}; Core::System::GetInstance().GPU().FlushRegion(ToCacheAddr(host_ptr), copy_amount); WriteBlock(process, dest_addr, host_ptr, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_addr += static_cast<VAddr>(copy_amount); src_addr += static_cast<VAddr>(copy_amount); remaining_size -= copy_amount; } } void CopyBlock(VAddr dest_addr, VAddr src_addr, std::size_t size) { CopyBlock(*Core::System::GetInstance().CurrentProcess(), dest_addr, src_addr, size); } } // namespace Memory