// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include <algorithm> #include "common/common_types.h" #include "common/math_util.h" #include "math.h" #include "pica.h" #include "rasterizer.h" #include "vertex_shader.h" #include "debug_utils/debug_utils.h" namespace Pica { namespace Rasterizer { static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) { const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress(); u32* color_buffer = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(addr))); // Similarly to textures, the render framebuffer is laid out from bottom to top, too. // NOTE: The framebuffer height register contains the actual FB height minus one. y = (registers.framebuffer.height - y); switch (registers.framebuffer.color_format) { case registers.framebuffer.RGBA8: { u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b(); *(color_buffer + x + y * registers.framebuffer.GetWidth()) = value; break; } default: LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", registers.framebuffer.color_format); exit(1); } } static const Math::Vec4<u8> GetPixel(int x, int y) { const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress(); u32* color_buffer_u32 = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(addr))); y = (registers.framebuffer.height - y); u32 value = *(color_buffer_u32 + x + y * registers.framebuffer.GetWidth()); Math::Vec4<u8> ret; ret.a() = value >> 24; ret.r() = (value >> 16) & 0xFF; ret.g() = (value >> 8) & 0xFF; ret.b() = value & 0xFF; return ret; } static u32 GetDepth(int x, int y) { const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress(); u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(addr))); y = (registers.framebuffer.height - y); // Assuming 16-bit depth buffer format until actual format handling is implemented return *(depth_buffer + x + y * registers.framebuffer.GetWidth()); } static void SetDepth(int x, int y, u16 value) { const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress(); u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(addr))); y = (registers.framebuffer.height - y); // Assuming 16-bit depth buffer format until actual format handling is implemented *(depth_buffer + x + y * registers.framebuffer.GetWidth()) = value; } // NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values struct Fix12P4 { Fix12P4() {} Fix12P4(u16 val) : val(val) {} static u16 FracMask() { return 0xF; } static u16 IntMask() { return (u16)~0xF; } operator u16() const { return val; } bool operator < (const Fix12P4& oth) const { return (u16)*this < (u16)oth; } private: u16 val; }; /** * Calculate signed area of the triangle spanned by the three argument vertices. * The sign denotes an orientation. * * @todo define orientation concretely. */ static int SignedArea (const Math::Vec2<Fix12P4>& vtx1, const Math::Vec2<Fix12P4>& vtx2, const Math::Vec2<Fix12P4>& vtx3) { const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0); const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0); // TODO: There is a very small chance this will overflow for sizeof(int) == 4 return Math::Cross(vec1, vec2).z; }; /** * Helper function for ProcessTriangle with the "reversed" flag to allow for implementing * culling via recursion. */ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0, const VertexShader::OutputVertex& v1, const VertexShader::OutputVertex& v2, bool reversed = false) { // vertex positions in rasterizer coordinates auto FloatToFix = [](float24 flt) { // TODO: Rounding here is necessary to prevent garbage pixels at // triangle borders. Is it that the correct solution, though? return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f))); }; auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) { return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)}; }; Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos), ScreenToRasterizerCoordinates(v1.screenpos), ScreenToRasterizerCoordinates(v2.screenpos) }; if (registers.cull_mode == Regs::CullMode::KeepAll) { // Make sure we always end up with a triangle wound counter-clockwise if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) { ProcessTriangleInternal(v0, v2, v1, true); return; } } else { if (!reversed && registers.cull_mode == Regs::CullMode::KeepClockWise) { // Reverse vertex order and use the CCW code path. ProcessTriangleInternal(v0, v2, v1, true); return; } // Cull away triangles which are wound clockwise. if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) return; } // TODO: Proper scissor rect test! u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); min_x &= Fix12P4::IntMask(); min_y &= Fix12P4::IntMask(); max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask()); max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask()); // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias // values which are added to the barycentric coordinates w0, w1 and w2, respectively. // NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones... auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx, const Math::Vec2<Fix12P4>& line1, const Math::Vec2<Fix12P4>& line2) { if (line1.y == line2.y) { // just check if vertex is above us => bottom line parallel to x-axis return vtx.y < line1.y; } else { // check if vertex is on our left => right side // TODO: Not sure how likely this is to overflow return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y); } }; int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0; int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0; int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0; auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w); auto textures = registers.GetTextures(); auto tev_stages = registers.GetTevStages(); // Enter rasterization loop, starting at the center of the topleft bounding box corner. // TODO: Not sure if looping through x first might be faster for (u16 y = min_y + 8; y < max_y; y += 0x10) { for (u16 x = min_x + 8; x < max_x; x += 0x10) { // Calculate the barycentric coordinates w0, w1 and w2 int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); int wsum = w0 + w1 + w2; // If current pixel is not covered by the current primitive if (w0 < 0 || w1 < 0 || w2 < 0) continue; auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)), float24::FromFloat32(static_cast<float>(w1)), float24::FromFloat32(static_cast<float>(w2))); float24 interpolated_w_inverse = float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates); // Perspective correct attribute interpolation: // Attribute values cannot be calculated by simple linear interpolation since // they are not linear in screen space. For example, when interpolating a // texture coordinate across two vertices, something simple like // u = (u0*w0 + u1*w1)/(w0+w1) // will not work. However, the attribute value divided by the // clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear // in screenspace. Hence, we can linearly interpolate these two independently and // calculate the interpolated attribute by dividing the results. // I.e. // u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) // one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) // u = u_over_w / one_over_w // // The generalization to three vertices is straightforward in baricentric coordinates. auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) { auto attr_over_w = Math::MakeVec(attr0, attr1, attr2); float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates); return interpolated_attr_over_w * interpolated_w_inverse; }; Math::Vec4<u8> primary_color{ (u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255), (u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255), (u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255), (u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255) }; Math::Vec2<float24> uv[3]; uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u()); uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v()); uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u()); uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v()); Math::Vec4<u8> texture_color[3]{}; for (int i = 0; i < 3; ++i) { const auto& texture = textures[i]; if (!texture.enabled) continue; DEBUG_ASSERT(0 != texture.config.address); int s = (int)(uv[i].u() * float24::FromFloat32(static_cast<float>(texture.config.width))).ToFloat32(); int t = (int)(uv[i].v() * float24::FromFloat32(static_cast<float>(texture.config.height))).ToFloat32(); static auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val, unsigned size) { switch (mode) { case Regs::TextureConfig::ClampToEdge: val = std::max(val, 0); val = std::min(val, (int)size - 1); return val; case Regs::TextureConfig::Repeat: return (int)((unsigned)val % size); case Regs::TextureConfig::MirroredRepeat: { int val = (int)((unsigned)val % (2 * size)); if (val >= size) val = 2 * size - 1 - val; return val; } default: LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode %x\n", (int)mode); UNIMPLEMENTED(); return 0; } }; // Textures are laid out from bottom to top, hence we invert the t coordinate. // NOTE: This may not be the right place for the inversion. // TODO: Check if this applies to ETC textures, too. s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width); t = texture.config.height - 1 - GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height); u8* texture_data = Memory::GetPointer(PAddrToVAddr(texture.config.GetPhysicalAddress())); auto info = DebugUtils::TextureInfo::FromPicaRegister(texture.config, texture.format); texture_color[i] = DebugUtils::LookupTexture(texture_data, s, t, info); DebugUtils::DumpTexture(texture.config, texture_data); } // Texture environment - consists of 6 stages of color and alpha combining. // // Color combiners take three input color values from some source (e.g. interpolated // vertex color, texture color, previous stage, etc), perform some very simple // operations on each of them (e.g. inversion) and then calculate the output color // with some basic arithmetic. Alpha combiners can be configured separately but work // analogously. Math::Vec4<u8> combiner_output; for (const auto& tev_stage : tev_stages) { using Source = Regs::TevStageConfig::Source; using ColorModifier = Regs::TevStageConfig::ColorModifier; using AlphaModifier = Regs::TevStageConfig::AlphaModifier; using Operation = Regs::TevStageConfig::Operation; auto GetSource = [&](Source source) -> Math::Vec4<u8> { switch (source) { // TODO: What's the difference between these two? case Source::PrimaryColor: case Source::PrimaryFragmentColor: return primary_color; case Source::Texture0: return texture_color[0]; case Source::Texture1: return texture_color[1]; case Source::Texture2: return texture_color[2]; case Source::Constant: return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b, tev_stage.const_a}; case Source::Previous: return combiner_output; default: LOG_ERROR(HW_GPU, "Unknown color combiner source %d\n", (int)source); UNIMPLEMENTED(); return {}; } }; static auto GetColorModifier = [](ColorModifier factor, const Math::Vec4<u8>& values) -> Math::Vec3<u8> { switch (factor) { case ColorModifier::SourceColor: return values.rgb(); case ColorModifier::OneMinusSourceColor: return (Math::Vec3<u8>(255, 255, 255) - values.rgb()).Cast<u8>(); case ColorModifier::SourceAlpha: return values.aaa(); case ColorModifier::OneMinusSourceAlpha: return (Math::Vec3<u8>(255, 255, 255) - values.aaa()).Cast<u8>(); case ColorModifier::SourceRed: return values.rrr(); case ColorModifier::OneMinusSourceRed: return (Math::Vec3<u8>(255, 255, 255) - values.rrr()).Cast<u8>(); case ColorModifier::SourceGreen: return values.ggg(); case ColorModifier::OneMinusSourceGreen: return (Math::Vec3<u8>(255, 255, 255) - values.ggg()).Cast<u8>(); case ColorModifier::SourceBlue: return values.bbb(); case ColorModifier::OneMinusSourceBlue: return (Math::Vec3<u8>(255, 255, 255) - values.bbb()).Cast<u8>(); } }; static auto GetAlphaModifier = [](AlphaModifier factor, const Math::Vec4<u8>& values) -> u8 { switch (factor) { case AlphaModifier::SourceAlpha: return values.a(); case AlphaModifier::OneMinusSourceAlpha: return 255 - values.a(); case AlphaModifier::SourceRed: return values.r(); case AlphaModifier::OneMinusSourceRed: return 255 - values.r(); case AlphaModifier::SourceGreen: return values.g(); case AlphaModifier::OneMinusSourceGreen: return 255 - values.g(); case AlphaModifier::SourceBlue: return values.b(); case AlphaModifier::OneMinusSourceBlue: return 255 - values.b(); } }; static auto ColorCombine = [](Operation op, const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> { switch (op) { case Operation::Replace: return input[0]; case Operation::Modulate: return ((input[0] * input[1]) / 255).Cast<u8>(); case Operation::Add: { auto result = input[0] + input[1]; result.r() = std::min(255, result.r()); result.g() = std::min(255, result.g()); result.b() = std::min(255, result.b()); return result.Cast<u8>(); } case Operation::Lerp: return ((input[0] * input[2] + input[1] * (Math::MakeVec<u8>(255, 255, 255) - input[2]).Cast<u8>()) / 255).Cast<u8>(); case Operation::Subtract: { auto result = input[0].Cast<int>() - input[1].Cast<int>(); result.r() = std::max(0, result.r()); result.g() = std::max(0, result.g()); result.b() = std::max(0, result.b()); return result.Cast<u8>(); } case Operation::MultiplyThenAdd: { auto result = (input[0] * input[1] + 255 * input[2].Cast<int>()) / 255; result.r() = std::min(255, result.r()); result.g() = std::min(255, result.g()); result.b() = std::min(255, result.b()); return result.Cast<u8>(); } case Operation::AddThenMultiply: { auto result = input[0] + input[1]; result.r() = std::min(255, result.r()); result.g() = std::min(255, result.g()); result.b() = std::min(255, result.b()); result = (result * input[2].Cast<int>()) / 255; return result.Cast<u8>(); } default: LOG_ERROR(HW_GPU, "Unknown color combiner operation %d\n", (int)op); UNIMPLEMENTED(); return {}; } }; static auto AlphaCombine = [](Operation op, const std::array<u8,3>& input) -> u8 { switch (op) { case Operation::Replace: return input[0]; case Operation::Modulate: return input[0] * input[1] / 255; case Operation::Add: return std::min(255, input[0] + input[1]); case Operation::Lerp: return (input[0] * input[2] + input[1] * (255 - input[2])) / 255; case Operation::Subtract: return std::max(0, (int)input[0] - (int)input[1]); case Operation::MultiplyThenAdd: return std::min(255, (input[0] * input[1] + 255 * input[2]) / 255); case Operation::AddThenMultiply: return (std::min(255, (input[0] + input[1])) * input[2]) / 255; default: LOG_ERROR(HW_GPU, "Unknown alpha combiner operation %d\n", (int)op); UNIMPLEMENTED(); return 0; } }; // color combiner // NOTE: Not sure if the alpha combiner might use the color output of the previous // stage as input. Hence, we currently don't directly write the result to // combiner_output.rgb(), but instead store it in a temporary variable until // alpha combining has been done. Math::Vec3<u8> color_result[3] = { GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)), GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)), GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3)) }; auto color_output = ColorCombine(tev_stage.color_op, color_result); // alpha combiner std::array<u8,3> alpha_result = { GetAlphaModifier(tev_stage.alpha_modifier1, GetSource(tev_stage.alpha_source1)), GetAlphaModifier(tev_stage.alpha_modifier2, GetSource(tev_stage.alpha_source2)), GetAlphaModifier(tev_stage.alpha_modifier3, GetSource(tev_stage.alpha_source3)) }; auto alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result); combiner_output = Math::MakeVec(color_output, alpha_output); } if (registers.output_merger.alpha_test.enable) { bool pass = false; switch (registers.output_merger.alpha_test.func) { case registers.output_merger.Never: pass = false; break; case registers.output_merger.Always: pass = true; break; case registers.output_merger.Equal: pass = combiner_output.a() == registers.output_merger.alpha_test.ref; break; case registers.output_merger.NotEqual: pass = combiner_output.a() != registers.output_merger.alpha_test.ref; break; case registers.output_merger.LessThan: pass = combiner_output.a() < registers.output_merger.alpha_test.ref; break; case registers.output_merger.LessThanOrEqual: pass = combiner_output.a() <= registers.output_merger.alpha_test.ref; break; case registers.output_merger.GreaterThan: pass = combiner_output.a() > registers.output_merger.alpha_test.ref; break; case registers.output_merger.GreaterThanOrEqual: pass = combiner_output.a() >= registers.output_merger.alpha_test.ref; break; } if (!pass) continue; } // TODO: Does depth indeed only get written even if depth testing is enabled? if (registers.output_merger.depth_test_enable) { u16 z = (u16)((v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 + v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum); u16 ref_z = GetDepth(x >> 4, y >> 4); bool pass = false; switch (registers.output_merger.depth_test_func) { case registers.output_merger.Never: pass = false; break; case registers.output_merger.Always: pass = true; break; case registers.output_merger.Equal: pass = z == ref_z; break; case registers.output_merger.NotEqual: pass = z != ref_z; break; case registers.output_merger.LessThan: pass = z < ref_z; break; case registers.output_merger.LessThanOrEqual: pass = z <= ref_z; break; case registers.output_merger.GreaterThan: pass = z > ref_z; break; case registers.output_merger.GreaterThanOrEqual: pass = z >= ref_z; break; } if (!pass) continue; if (registers.output_merger.depth_write_enable) SetDepth(x >> 4, y >> 4, z); } auto dest = GetPixel(x >> 4, y >> 4); Math::Vec4<u8> blend_output = combiner_output; if (registers.output_merger.alphablend_enable) { auto params = registers.output_merger.alpha_blending; auto LookupFactorRGB = [&](decltype(params)::BlendFactor factor) -> Math::Vec3<u8> { switch (factor) { case params.Zero: return Math::Vec3<u8>(0, 0, 0); case params.One: return Math::Vec3<u8>(255, 255, 255); case params.SourceColor: return combiner_output.rgb(); case params.OneMinusSourceColor: return Math::Vec3<u8>(255 - combiner_output.r(), 255 - combiner_output.g(), 255 - combiner_output.b()); case params.DestColor: return dest.rgb(); case params.OneMinusDestColor: return Math::Vec3<u8>(255 - dest.r(), 255 - dest.g(), 255 - dest.b()); case params.SourceAlpha: return Math::Vec3<u8>(combiner_output.a(), combiner_output.a(), combiner_output.a()); case params.OneMinusSourceAlpha: return Math::Vec3<u8>(255 - combiner_output.a(), 255 - combiner_output.a(), 255 - combiner_output.a()); case params.DestAlpha: return Math::Vec3<u8>(dest.a(), dest.a(), dest.a()); case params.OneMinusDestAlpha: return Math::Vec3<u8>(255 - dest.a(), 255 - dest.a(), 255 - dest.a()); case params.ConstantColor: return Math::Vec3<u8>(registers.output_merger.blend_const.r, registers.output_merger.blend_const.g, registers.output_merger.blend_const.b); case params.OneMinusConstantColor: return Math::Vec3<u8>(255 - registers.output_merger.blend_const.r, 255 - registers.output_merger.blend_const.g, 255 - registers.output_merger.blend_const.b); case params.ConstantAlpha: return Math::Vec3<u8>(registers.output_merger.blend_const.a, registers.output_merger.blend_const.a, registers.output_merger.blend_const.a); case params.OneMinusConstantAlpha: return Math::Vec3<u8>(255 - registers.output_merger.blend_const.a, 255 - registers.output_merger.blend_const.a, 255 - registers.output_merger.blend_const.a); default: LOG_CRITICAL(HW_GPU, "Unknown color blend factor %x", factor); exit(0); break; } }; auto LookupFactorA = [&](decltype(params)::BlendFactor factor) -> u8 { switch (factor) { case params.Zero: return 0; case params.One: return 255; case params.SourceAlpha: return combiner_output.a(); case params.OneMinusSourceAlpha: return 255 - combiner_output.a(); case params.DestAlpha: return dest.a(); case params.OneMinusDestAlpha: return 255 - dest.a(); case params.ConstantAlpha: return registers.output_merger.blend_const.a; case params.OneMinusConstantAlpha: return 255 - registers.output_merger.blend_const.a; default: LOG_CRITICAL(HW_GPU, "Unknown alpha blend factor %x", factor); exit(0); break; } }; using BlendEquation = decltype(params)::BlendEquation; static auto EvaluateBlendEquation = [](const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor, const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor, BlendEquation equation) { Math::Vec4<int> result; auto src_result = (src * srcfactor).Cast<int>(); auto dst_result = (dest * destfactor).Cast<int>(); switch (equation) { case BlendEquation::Add: result = (src_result + dst_result) / 255; break; case BlendEquation::Subtract: result = (src_result - dst_result) / 255; break; case BlendEquation::ReverseSubtract: result = (dst_result - src_result) / 255; break; // TODO: How do these two actually work? // OpenGL doesn't include the blend factors in the min/max computations, // but is this what the 3DS actually does? case BlendEquation::Min: result.r() = std::min(src.r(), dest.r()); result.g() = std::min(src.g(), dest.g()); result.b() = std::min(src.b(), dest.b()); result.a() = std::min(src.a(), dest.a()); break; case BlendEquation::Max: result.r() = std::max(src.r(), dest.r()); result.g() = std::max(src.g(), dest.g()); result.b() = std::max(src.b(), dest.b()); result.a() = std::max(src.a(), dest.a()); break; default: LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation %x", equation); exit(0); } return Math::Vec4<u8>(MathUtil::Clamp(result.r(), 0, 255), MathUtil::Clamp(result.g(), 0, 255), MathUtil::Clamp(result.b(), 0, 255), MathUtil::Clamp(result.a(), 0, 255)); }; auto srcfactor = Math::MakeVec(LookupFactorRGB(params.factor_source_rgb), LookupFactorA(params.factor_source_a)); auto dstfactor = Math::MakeVec(LookupFactorRGB(params.factor_dest_rgb), LookupFactorA(params.factor_dest_a)); blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_rgb); blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_a).a(); } else { LOG_CRITICAL(HW_GPU, "logic op: %x", registers.output_merger.logic_op); exit(0); } const Math::Vec4<u8> result = { registers.output_merger.red_enable ? blend_output.r() : dest.r(), registers.output_merger.green_enable ? blend_output.g() : dest.g(), registers.output_merger.blue_enable ? blend_output.b() : dest.b(), registers.output_merger.alpha_enable ? blend_output.a() : dest.a() }; DrawPixel(x >> 4, y >> 4, result); } } } void ProcessTriangle(const VertexShader::OutputVertex& v0, const VertexShader::OutputVertex& v1, const VertexShader::OutputVertex& v2) { ProcessTriangleInternal(v0, v1, v2); } } // namespace Rasterizer } // namespace Pica