suyu/src/video_core/math.h

622 lines
16 KiB
C
Raw Normal View History

2014-12-17 02:38:14 -03:00
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
// Copyright 2014 Tony Wasserka
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the owner nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#include <cmath>
namespace Math {
template<typename T> class Vec2;
template<typename T> class Vec3;
template<typename T> class Vec4;
template<typename T>
static inline Vec2<T> MakeVec(const T& x, const T& y);
template<typename T>
static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z);
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w);
template<typename T>
class Vec2 {
public:
2014-08-23 07:48:00 -04:00
T x;
T y;
T* AsArray() { return &x; }
Vec2() = default;
Vec2(const T a[2]) : x(a[0]), y(a[1]) {}
Vec2(const T& _x, const T& _y) : x(_x), y(_y) {}
template<typename T2>
Vec2<T2> Cast() const {
return Vec2<T2>((T2)x, (T2)y);
}
static Vec2 AssignToAll(const T& f)
{
return Vec2<T>(f, f);
}
void Write(T a[2])
{
a[0] = x; a[1] = y;
}
Vec2<decltype(T{}+T{})> operator +(const Vec2& other) const
{
return MakeVec(x+other.x, y+other.y);
}
void operator += (const Vec2 &other)
{
x+=other.x; y+=other.y;
}
Vec2<decltype(T{}-T{})> operator -(const Vec2& other) const
{
return MakeVec(x-other.x, y-other.y);
}
void operator -= (const Vec2& other)
{
x-=other.x; y-=other.y;
}
Vec2<decltype(-T{})> operator -() const
{
return MakeVec(-x,-y);
}
Vec2<decltype(T{}*T{})> operator * (const Vec2& other) const
{
return MakeVec(x*other.x, y*other.y);
}
template<typename V>
Vec2<decltype(T{}*V{})> operator * (const V& f) const
{
return MakeVec(x*f,y*f);
}
template<typename V>
void operator *= (const V& f)
{
x*=f; y*=f;
}
template<typename V>
Vec2<decltype(T{}/V{})> operator / (const V& f) const
{
return MakeVec(x/f,y/f);
}
template<typename V>
void operator /= (const V& f)
{
*this = *this / f;
}
T Length2() const
{
return x*x + y*y;
}
// Only implemented for T=float
float Length() const;
void SetLength(const float l);
Vec2 WithLength(const float l) const;
float Distance2To(Vec2 &other);
Vec2 Normalized() const;
float Normalize(); // returns the previous length, which is often useful
T& operator [] (int i) //allow vector[1] = 3 (vector.y=3)
{
return *((&x) + i);
}
T operator [] (const int i) const
{
return *((&x) + i);
}
void SetZero()
{
x=0; y=0;
}
// Common aliases: UV (texel coordinates), ST (texture coordinates)
T& u() { return x; }
T& v() { return y; }
T& s() { return x; }
T& t() { return y; }
const T& u() const { return x; }
const T& v() const { return y; }
const T& s() const { return x; }
const T& t() const { return y; }
// swizzlers - create a subvector of specific components
const Vec2 yx() const { return Vec2(y, x); }
const Vec2 vu() const { return Vec2(y, x); }
const Vec2 ts() const { return Vec2(y, x); }
};
template<typename T, typename V>
Vec2<T> operator * (const V& f, const Vec2<T>& vec)
{
return Vec2<T>(f*vec.x,f*vec.y);
}
typedef Vec2<float> Vec2f;
template<typename T>
class Vec3
{
public:
2014-08-23 07:48:00 -04:00
T x;
T y;
T z;
T* AsArray() { return &x; }
Vec3() = default;
Vec3(const T a[3]) : x(a[0]), y(a[1]), z(a[2]) {}
Vec3(const T& _x, const T& _y, const T& _z) : x(_x), y(_y), z(_z) {}
template<typename T2>
Vec3<T2> Cast() const {
return MakeVec<T2>((T2)x, (T2)y, (T2)z);
}
// Only implemented for T=int and T=float
static Vec3 FromRGB(unsigned int rgb);
unsigned int ToRGB() const; // alpha bits set to zero
static Vec3 AssignToAll(const T& f)
{
return MakeVec(f, f, f);
}
void Write(T a[3])
{
a[0] = x; a[1] = y; a[2] = z;
}
Vec3<decltype(T{}+T{})> operator +(const Vec3 &other) const
{
return MakeVec(x+other.x, y+other.y, z+other.z);
}
void operator += (const Vec3 &other)
{
x+=other.x; y+=other.y; z+=other.z;
}
Vec3<decltype(T{}-T{})> operator -(const Vec3 &other) const
{
return MakeVec(x-other.x, y-other.y, z-other.z);
}
void operator -= (const Vec3 &other)
{
x-=other.x; y-=other.y; z-=other.z;
}
Vec3<decltype(-T{})> operator -() const
{
return MakeVec(-x,-y,-z);
}
Vec3<decltype(T{}*T{})> operator * (const Vec3 &other) const
{
return MakeVec(x*other.x, y*other.y, z*other.z);
}
template<typename V>
Vec3<decltype(T{}*V{})> operator * (const V& f) const
{
return MakeVec(x*f,y*f,z*f);
}
template<typename V>
void operator *= (const V& f)
{
x*=f; y*=f; z*=f;
}
template<typename V>
Vec3<decltype(T{}/V{})> operator / (const V& f) const
{
return MakeVec(x/f,y/f,z/f);
}
template<typename V>
void operator /= (const V& f)
{
*this = *this / f;
}
T Length2() const
{
return x*x + y*y + z*z;
}
// Only implemented for T=float
float Length() const;
void SetLength(const float l);
Vec3 WithLength(const float l) const;
float Distance2To(Vec3 &other);
Vec3 Normalized() const;
float Normalize(); // returns the previous length, which is often useful
T& operator [] (int i) //allow vector[2] = 3 (vector.z=3)
{
return *((&x) + i);
}
T operator [] (const int i) const
{
return *((&x) + i);
}
void SetZero()
{
x=0; y=0; z=0;
}
// Common aliases: UVW (texel coordinates), RGB (colors), STQ (texture coordinates)
T& u() { return x; }
T& v() { return y; }
T& w() { return z; }
T& r() { return x; }
T& g() { return y; }
T& b() { return z; }
T& s() { return x; }
T& t() { return y; }
T& q() { return z; }
const T& u() const { return x; }
const T& v() const { return y; }
const T& w() const { return z; }
const T& r() const { return x; }
const T& g() const { return y; }
const T& b() const { return z; }
const T& s() const { return x; }
const T& t() const { return y; }
const T& q() const { return z; }
// swizzlers - create a subvector of specific components
// e.g. Vec2 uv() { return Vec2(x,y); }
// _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx)
#define _DEFINE_SWIZZLER2(a, b, name) const Vec2<T> name() const { return Vec2<T>(a, b); }
#define DEFINE_SWIZZLER2(a, b, a2, b2, a3, b3, a4, b4) \
_DEFINE_SWIZZLER2(a, b, a##b); \
_DEFINE_SWIZZLER2(a, b, a2##b2); \
_DEFINE_SWIZZLER2(a, b, a3##b3); \
_DEFINE_SWIZZLER2(a, b, a4##b4); \
_DEFINE_SWIZZLER2(b, a, b##a); \
_DEFINE_SWIZZLER2(b, a, b2##a2); \
_DEFINE_SWIZZLER2(b, a, b3##a3); \
2014-08-23 07:48:00 -04:00
_DEFINE_SWIZZLER2(b, a, b4##a4)
DEFINE_SWIZZLER2(x, y, r, g, u, v, s, t);
DEFINE_SWIZZLER2(x, z, r, b, u, w, s, q);
DEFINE_SWIZZLER2(y, z, g, b, v, w, t, q);
#undef DEFINE_SWIZZLER2
#undef _DEFINE_SWIZZLER2
};
template<typename T, typename V>
Vec3<T> operator * (const V& f, const Vec3<T>& vec)
{
return Vec3<T>(f*vec.x,f*vec.y,f*vec.z);
}
2014-08-23 07:48:00 -04:00
template<>
inline float Vec3<float>::Length() const {
return std::sqrt(x * x + y * y + z * z);
}
template<>
inline Vec3<float> Vec3<float>::Normalized() const {
return *this / Length();
}
typedef Vec3<float> Vec3f;
template<typename T>
class Vec4
{
public:
2014-08-23 07:48:00 -04:00
T x;
T y;
T z;
T w;
T* AsArray() { return &x; }
Vec4() = default;
Vec4(const T a[4]) : x(a[0]), y(a[1]), z(a[2]), w(a[3]) {}
Vec4(const T& _x, const T& _y, const T& _z, const T& _w) : x(_x), y(_y), z(_z), w(_w) {}
template<typename T2>
Vec4<T2> Cast() const {
return Vec4<T2>((T2)x, (T2)y, (T2)z, (T2)w);
}
// Only implemented for T=int and T=float
static Vec4 FromRGBA(unsigned int rgba);
unsigned int ToRGBA() const;
static Vec4 AssignToAll(const T& f) {
return Vec4<T>(f, f, f, f);
}
void Write(T a[4])
{
a[0] = x; a[1] = y; a[2] = z; a[3] = w;
}
Vec4<decltype(T{}+T{})> operator +(const Vec4& other) const
{
return MakeVec(x+other.x, y+other.y, z+other.z, w+other.w);
}
void operator += (const Vec4& other)
{
x+=other.x; y+=other.y; z+=other.z; w+=other.w;
}
Vec4<decltype(T{}-T{})> operator -(const Vec4 &other) const
{
return MakeVec(x-other.x, y-other.y, z-other.z, w-other.w);
}
void operator -= (const Vec4 &other)
{
x-=other.x; y-=other.y; z-=other.z; w-=other.w;
}
Vec4<decltype(-T{})> operator -() const
{
return MakeVec(-x,-y,-z,-w);
}
Vec4<decltype(T{}*T{})> operator * (const Vec4 &other) const
{
return MakeVec(x*other.x, y*other.y, z*other.z, w*other.w);
}
template<typename V>
Vec4<decltype(T{}*V{})> operator * (const V& f) const
{
return MakeVec(x*f,y*f,z*f,w*f);
}
template<typename V>
void operator *= (const V& f)
{
x*=f; y*=f; z*=f; w*=f;
}
template<typename V>
Vec4<decltype(T{}/V{})> operator / (const V& f) const
{
return MakeVec(x/f,y/f,z/f,w/f);
}
template<typename V>
void operator /= (const V& f)
{
*this = *this / f;
}
T Length2() const
{
return x*x + y*y + z*z + w*w;
}
// Only implemented for T=float
float Length() const;
void SetLength(const float l);
Vec4 WithLength(const float l) const;
float Distance2To(Vec4 &other);
Vec4 Normalized() const;
float Normalize(); // returns the previous length, which is often useful
T& operator [] (int i) //allow vector[2] = 3 (vector.z=3)
{
return *((&x) + i);
}
T operator [] (const int i) const
{
return *((&x) + i);
}
void SetZero()
{
x=0; y=0; z=0;
}
// Common alias: RGBA (colors)
T& r() { return x; }
T& g() { return y; }
T& b() { return z; }
T& a() { return w; }
const T& r() const { return x; }
const T& g() const { return y; }
const T& b() const { return z; }
const T& a() const { return w; }
// swizzlers - create a subvector of specific components
// e.g. Vec2 uv() { return Vec2(x,y); }
// _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx)
#define _DEFINE_SWIZZLER2(a, b, name) const Vec2<T> name() const { return Vec2<T>(a, b); }
#define DEFINE_SWIZZLER2(a, b, a2, b2) \
_DEFINE_SWIZZLER2(a, b, a##b); \
_DEFINE_SWIZZLER2(a, b, a2##b2); \
_DEFINE_SWIZZLER2(b, a, b##a); \
2014-08-23 07:48:00 -04:00
_DEFINE_SWIZZLER2(b, a, b2##a2)
DEFINE_SWIZZLER2(x, y, r, g);
DEFINE_SWIZZLER2(x, z, r, b);
DEFINE_SWIZZLER2(x, w, r, a);
DEFINE_SWIZZLER2(y, z, g, b);
DEFINE_SWIZZLER2(y, w, g, a);
DEFINE_SWIZZLER2(z, w, b, a);
#undef DEFINE_SWIZZLER2
#undef _DEFINE_SWIZZLER2
#define _DEFINE_SWIZZLER3(a, b, c, name) const Vec3<T> name() const { return Vec3<T>(a, b, c); }
#define DEFINE_SWIZZLER3(a, b, c, a2, b2, c2) \
_DEFINE_SWIZZLER3(a, b, c, a##b##c); \
_DEFINE_SWIZZLER3(a, c, b, a##c##b); \
_DEFINE_SWIZZLER3(b, a, c, b##a##c); \
_DEFINE_SWIZZLER3(b, c, a, b##c##a); \
_DEFINE_SWIZZLER3(c, a, b, c##a##b); \
_DEFINE_SWIZZLER3(c, b, a, c##b##a); \
_DEFINE_SWIZZLER3(a, b, c, a2##b2##c2); \
_DEFINE_SWIZZLER3(a, c, b, a2##c2##b2); \
_DEFINE_SWIZZLER3(b, a, c, b2##a2##c2); \
_DEFINE_SWIZZLER3(b, c, a, b2##c2##a2); \
_DEFINE_SWIZZLER3(c, a, b, c2##a2##b2); \
2014-08-23 07:48:00 -04:00
_DEFINE_SWIZZLER3(c, b, a, c2##b2##a2)
DEFINE_SWIZZLER3(x, y, z, r, g, b);
DEFINE_SWIZZLER3(x, y, w, r, g, a);
DEFINE_SWIZZLER3(x, z, w, r, b, a);
DEFINE_SWIZZLER3(y, z, w, g, b, a);
#undef DEFINE_SWIZZLER3
#undef _DEFINE_SWIZZLER3
};
template<typename T, typename V>
Vec4<decltype(V{}*T{})> operator * (const V& f, const Vec4<T>& vec)
{
return MakeVec(f*vec.x,f*vec.y,f*vec.z,f*vec.w);
}
typedef Vec4<float> Vec4f;
template<typename T>
static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec2<T>& a, const Vec2<T>& b)
{
return a.x*b.x + a.y*b.y;
}
template<typename T>
static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec3<T>& a, const Vec3<T>& b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}
template<typename T>
static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec4<T>& a, const Vec4<T>& b)
{
return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w;
}
template<typename T>
static inline Vec3<decltype(T{}*T{}-T{}*T{})> Cross(const Vec3<T>& a, const Vec3<T>& b)
{
return MakeVec(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);
}
// linear interpolation via float: 0.0=begin, 1.0=end
template<typename X>
static inline decltype(X{}*float{}+X{}*float{}) Lerp(const X& begin, const X& end, const float t)
{
return begin*(1.f-t) + end*t;
}
// linear interpolation via int: 0=begin, base=end
template<typename X, int base>
static inline decltype((X{}*int{}+X{}*int{}) / base) LerpInt(const X& begin, const X& end, const int t)
{
return (begin*(base-t) + end*t) / base;
}
// Utility vector factories
template<typename T>
static inline Vec2<T> MakeVec(const T& x, const T& y)
{
return Vec2<T>{x, y};
}
template<typename T>
static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z)
{
return Vec3<T>{x, y, z};
}
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const T& y, const Vec2<T>& zw)
{
return MakeVec(x, y, zw[0], zw[1]);
}
template<typename T>
static inline Vec3<T> MakeVec(const Vec2<T>& xy, const T& z)
{
return MakeVec(xy[0], xy[1], z);
}
template<typename T>
static inline Vec3<T> MakeVec(const T& x, const Vec2<T>& yz)
{
return MakeVec(x, yz[0], yz[1]);
}
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w)
{
return Vec4<T>{x, y, z, w};
}
template<typename T>
static inline Vec4<T> MakeVec(const Vec2<T>& xy, const T& z, const T& w)
{
return MakeVec(xy[0], xy[1], z, w);
}
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w)
{
return MakeVec(x, yz[0], yz[1], w);
}
// NOTE: This has priority over "Vec2<Vec2<T>> MakeVec(const Vec2<T>& x, const Vec2<T>& y)".
// Even if someone wanted to use an odd object like Vec2<Vec2<T>>, the compiler would error
// out soon enough due to misuse of the returned structure.
template<typename T>
static inline Vec4<T> MakeVec(const Vec2<T>& xy, const Vec2<T>& zw)
{
return MakeVec(xy[0], xy[1], zw[0], zw[1]);
}
template<typename T>
static inline Vec4<T> MakeVec(const Vec3<T>& xyz, const T& w)
{
return MakeVec(xyz[0], xyz[1], xyz[2], w);
}
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yzw)
{
return MakeVec(x, yzw[0], yzw[1], yzw[2]);
}
} // namespace