suyu/src/core/hle/kernel/kernel.cpp

647 lines
22 KiB
C++
Raw Normal View History

2014-12-17 02:38:14 -03:00
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2014-05-09 22:11:18 -04:00
2020-02-29 14:58:50 -03:00
#include <array>
#include <atomic>
2020-02-22 11:27:40 -03:00
#include <bitset>
#include <functional>
#include <memory>
#include <thread>
#include <unordered_set>
#include <utility>
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/thread.h"
#include "core/arm/arm_interface.h"
2020-02-29 14:58:50 -03:00
#include "core/arm/cpu_interrupt_handler.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/cpu_manager.h"
#include "core/device_memory.h"
2020-02-22 11:27:40 -03:00
#include "core/hardware_properties.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/memory/memory_layout.h"
#include "core/hle/kernel/memory/memory_manager.h"
#include "core/hle/kernel/memory/slab_heap.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/service_thread.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/synchronization.h"
2014-05-09 22:11:18 -04:00
#include "core/hle/kernel/thread.h"
2020-02-14 11:56:27 -03:00
#include "core/hle/kernel/time_manager.h"
#include "core/hle/lock.h"
#include "core/hle/result.h"
#include "core/memory.h"
2014-05-09 22:11:18 -04:00
MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));
namespace Kernel {
2014-05-09 22:11:18 -04:00
struct KernelCore::Impl {
explicit Impl(Core::System& system, KernelCore& kernel)
: synchronization{system}, time_manager{system}, global_handle_table{kernel}, system{
system} {}
void SetMulticore(bool is_multicore) {
this->is_multicore = is_multicore;
}
void Initialize(KernelCore& kernel) {
process_list.clear();
2020-03-11 21:44:53 -03:00
RegisterHostThread();
global_scheduler_context = std::make_unique<Kernel::GlobalSchedulerContext>(kernel);
InitializePhysicalCores();
InitializeSystemResourceLimit(kernel);
InitializeMemoryLayout();
InitializePreemption(kernel);
InitializeSchedulers();
InitializeSuspendThreads();
}
void InitializeCores() {
for (auto& core : cores) {
core.Initialize(current_process->Is64BitProcess());
}
}
void Shutdown() {
next_object_id = 0;
next_kernel_process_id = Process::InitialKIPIDMin;
next_user_process_id = Process::ProcessIDMin;
next_thread_id = 1;
2020-03-11 21:44:53 -03:00
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
if (suspend_threads[i]) {
suspend_threads[i].reset();
}
}
cores.clear();
current_process = nullptr;
system_resource_limit = nullptr;
global_handle_table.Clear();
preemption_event = nullptr;
named_ports.clear();
exclusive_monitor.reset();
// Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
next_host_thread_id = Core::Hardware::NUM_CPU_CORES;
// Ensures all service threads gracefully shutdown
service_threads.clear();
}
void InitializePhysicalCores() {
2020-01-26 17:14:18 -03:00
exclusive_monitor =
Core::MakeExclusiveMonitor(system.Memory(), Core::Hardware::NUM_CPU_CORES);
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
schedulers[i] = std::make_unique<Kernel::KScheduler>(system, i);
cores.emplace_back(i, system, *schedulers[i], interrupts);
}
}
void InitializeSchedulers() {
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
cores[i].Scheduler().Initialize();
}
}
// Creates the default system resource limit
void InitializeSystemResourceLimit(KernelCore& kernel) {
system_resource_limit = ResourceLimit::Create(kernel);
// If setting the default system values fails, then something seriously wrong has occurred.
ASSERT(system_resource_limit->SetLimitValue(ResourceType::PhysicalMemory, 0x100000000)
.IsSuccess());
ASSERT(system_resource_limit->SetLimitValue(ResourceType::Threads, 800).IsSuccess());
ASSERT(system_resource_limit->SetLimitValue(ResourceType::Events, 700).IsSuccess());
ASSERT(system_resource_limit->SetLimitValue(ResourceType::TransferMemory, 200).IsSuccess());
ASSERT(system_resource_limit->SetLimitValue(ResourceType::Sessions, 900).IsSuccess());
if (!system_resource_limit->Reserve(ResourceType::PhysicalMemory, 0) ||
!system_resource_limit->Reserve(ResourceType::PhysicalMemory, 0x60000)) {
UNREACHABLE();
}
}
void InitializePreemption(KernelCore& kernel) {
preemption_event = Core::Timing::CreateEvent(
"PreemptionCallback", [this, &kernel](std::uintptr_t, std::chrono::nanoseconds) {
{
KScopedSchedulerLock lock(kernel);
global_scheduler_context->PreemptThreads();
}
const auto time_interval = std::chrono::nanoseconds{
Core::Timing::msToCycles(std::chrono::milliseconds(10))};
system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
});
const auto time_interval =
std::chrono::nanoseconds{Core::Timing::msToCycles(std::chrono::milliseconds(10))};
system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
}
void InitializeSuspendThreads() {
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
std::string name = "Suspend Thread Id:" + std::to_string(i);
std::function<void(void*)> init_func = Core::CpuManager::GetSuspendThreadStartFunc();
void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
const auto type =
static_cast<ThreadType>(THREADTYPE_KERNEL | THREADTYPE_HLE | THREADTYPE_SUSPEND);
auto thread_res =
2020-10-20 23:07:39 -03:00
Thread::Create(system, type, std::move(name), 0, 0, 0, static_cast<u32>(i), 0,
nullptr, std::move(init_func), init_func_parameter);
suspend_threads[i] = std::move(thread_res).Unwrap();
}
}
void MakeCurrentProcess(Process* process) {
current_process = process;
if (process == nullptr) {
return;
}
const u32 core_id = GetCurrentHostThreadID();
if (core_id < Core::Hardware::NUM_CPU_CORES) {
system.Memory().SetCurrentPageTable(*process, core_id);
}
}
/// Creates a new host thread ID, should only be called by GetHostThreadId
u32 AllocateHostThreadId(std::optional<std::size_t> core_id) {
if (core_id) {
// The first for slots are reserved for CPU core threads
ASSERT(*core_id < Core::Hardware::NUM_CPU_CORES);
return static_cast<u32>(*core_id);
} else {
return next_host_thread_id++;
}
}
/// Gets the host thread ID for the caller, allocating a new one if this is the first time
u32 GetHostThreadId(std::optional<std::size_t> core_id = std::nullopt) {
const thread_local auto host_thread_id{AllocateHostThreadId(core_id)};
return host_thread_id;
}
/// Registers a CPU core thread by allocating a host thread ID for it
void RegisterCoreThread(std::size_t core_id) {
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
const auto this_id = GetHostThreadId(core_id);
if (!is_multicore) {
single_core_thread_id = this_id;
}
}
/// Registers a new host thread by allocating a host thread ID for it
void RegisterHostThread() {
[[maybe_unused]] const auto this_id = GetHostThreadId();
}
[[nodiscard]] u32 GetCurrentHostThreadID() {
const auto this_id = GetHostThreadId();
if (!is_multicore && single_core_thread_id == this_id) {
return static_cast<u32>(system.GetCpuManager().CurrentCore());
}
return this_id;
}
[[nodiscard]] Core::EmuThreadHandle GetCurrentEmuThreadID() {
Core::EmuThreadHandle result = Core::EmuThreadHandle::InvalidHandle();
2020-02-22 11:27:40 -03:00
result.host_handle = GetCurrentHostThreadID();
if (result.host_handle >= Core::Hardware::NUM_CPU_CORES) {
return result;
}
const Kernel::KScheduler& sched = cores[result.host_handle].Scheduler();
const Kernel::Thread* current = sched.GetCurrentThread();
if (current != nullptr && !current->IsPhantomMode()) {
result.guest_handle = current->GetGlobalHandle();
} else {
result.guest_handle = InvalidHandle;
}
return result;
}
void InitializeMemoryLayout() {
// Initialize memory layout
constexpr Memory::MemoryLayout layout{Memory::MemoryLayout::GetDefaultLayout()};
constexpr std::size_t hid_size{0x40000};
constexpr std::size_t font_size{0x1100000};
constexpr std::size_t irs_size{0x8000};
constexpr std::size_t time_size{0x1000};
constexpr PAddr hid_addr{layout.System().StartAddress()};
constexpr PAddr font_pa{layout.System().StartAddress() + hid_size};
constexpr PAddr irs_addr{layout.System().StartAddress() + hid_size + font_size};
constexpr PAddr time_addr{layout.System().StartAddress() + hid_size + font_size + irs_size};
// Initialize memory manager
memory_manager = std::make_unique<Memory::MemoryManager>();
memory_manager->InitializeManager(Memory::MemoryManager::Pool::Application,
layout.Application().StartAddress(),
layout.Application().EndAddress());
memory_manager->InitializeManager(Memory::MemoryManager::Pool::Applet,
layout.Applet().StartAddress(),
layout.Applet().EndAddress());
memory_manager->InitializeManager(Memory::MemoryManager::Pool::System,
layout.System().StartAddress(),
layout.System().EndAddress());
hid_shared_mem = Kernel::SharedMemory::Create(
system.Kernel(), system.DeviceMemory(), nullptr,
{hid_addr, hid_size / Memory::PageSize}, Memory::MemoryPermission::None,
Memory::MemoryPermission::Read, hid_addr, hid_size, "HID:SharedMemory");
font_shared_mem = Kernel::SharedMemory::Create(
system.Kernel(), system.DeviceMemory(), nullptr,
{font_pa, font_size / Memory::PageSize}, Memory::MemoryPermission::None,
Memory::MemoryPermission::Read, font_pa, font_size, "Font:SharedMemory");
irs_shared_mem = Kernel::SharedMemory::Create(
system.Kernel(), system.DeviceMemory(), nullptr,
{irs_addr, irs_size / Memory::PageSize}, Memory::MemoryPermission::None,
Memory::MemoryPermission::Read, irs_addr, irs_size, "IRS:SharedMemory");
time_shared_mem = Kernel::SharedMemory::Create(
system.Kernel(), system.DeviceMemory(), nullptr,
{time_addr, time_size / Memory::PageSize}, Memory::MemoryPermission::None,
Memory::MemoryPermission::Read, time_addr, time_size, "Time:SharedMemory");
// Allocate slab heaps
user_slab_heap_pages = std::make_unique<Memory::SlabHeap<Memory::Page>>();
// Initialize slab heaps
constexpr u64 user_slab_heap_size{0x3de000};
user_slab_heap_pages->Initialize(
system.DeviceMemory().GetPointer(Core::DramMemoryMap::SlabHeapBase),
user_slab_heap_size);
}
std::atomic<u32> next_object_id{0};
std::atomic<u64> next_kernel_process_id{Process::InitialKIPIDMin};
std::atomic<u64> next_user_process_id{Process::ProcessIDMin};
std::atomic<u64> next_thread_id{1};
// Lists all processes that exist in the current session.
std::vector<std::shared_ptr<Process>> process_list;
Process* current_process = nullptr;
std::unique_ptr<Kernel::GlobalSchedulerContext> global_scheduler_context;
Kernel::Synchronization synchronization;
2020-02-14 11:56:27 -03:00
Kernel::TimeManager time_manager;
std::shared_ptr<ResourceLimit> system_resource_limit;
std::shared_ptr<Core::Timing::EventType> preemption_event;
2020-02-22 11:27:40 -03:00
// This is the kernel's handle table or supervisor handle table which
// stores all the objects in place.
HandleTable global_handle_table;
/// Map of named ports managed by the kernel, which can be retrieved using
/// the ConnectToPort SVC.
NamedPortTable named_ports;
std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor;
std::vector<Kernel::PhysicalCore> cores;
// Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
std::atomic<u32> next_host_thread_id{Core::Hardware::NUM_CPU_CORES};
// Kernel memory management
std::unique_ptr<Memory::MemoryManager> memory_manager;
std::unique_ptr<Memory::SlabHeap<Memory::Page>> user_slab_heap_pages;
// Shared memory for services
std::shared_ptr<Kernel::SharedMemory> hid_shared_mem;
std::shared_ptr<Kernel::SharedMemory> font_shared_mem;
std::shared_ptr<Kernel::SharedMemory> irs_shared_mem;
std::shared_ptr<Kernel::SharedMemory> time_shared_mem;
// Threads used for services
std::unordered_set<std::shared_ptr<Kernel::ServiceThread>> service_threads;
std::array<std::shared_ptr<Thread>, Core::Hardware::NUM_CPU_CORES> suspend_threads{};
2020-02-29 14:58:50 -03:00
std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES> interrupts{};
std::array<std::unique_ptr<Kernel::KScheduler>, Core::Hardware::NUM_CPU_CORES> schedulers{};
bool is_multicore{};
u32 single_core_thread_id{};
std::array<u64, Core::Hardware::NUM_CPU_CORES> svc_ticks{};
// System context
Core::System& system;
};
KernelCore::KernelCore(Core::System& system) : impl{std::make_unique<Impl>(system, *this)} {}
KernelCore::~KernelCore() {
Shutdown();
}
void KernelCore::SetMulticore(bool is_multicore) {
impl->SetMulticore(is_multicore);
}
void KernelCore::Initialize() {
impl->Initialize(*this);
}
void KernelCore::InitializeCores() {
impl->InitializeCores();
}
void KernelCore::Shutdown() {
impl->Shutdown();
}
std::shared_ptr<ResourceLimit> KernelCore::GetSystemResourceLimit() const {
return impl->system_resource_limit;
}
std::shared_ptr<Thread> KernelCore::RetrieveThreadFromGlobalHandleTable(Handle handle) const {
return impl->global_handle_table.Get<Thread>(handle);
}
void KernelCore::AppendNewProcess(std::shared_ptr<Process> process) {
impl->process_list.push_back(std::move(process));
}
void KernelCore::MakeCurrentProcess(Process* process) {
impl->MakeCurrentProcess(process);
}
Process* KernelCore::CurrentProcess() {
return impl->current_process;
}
const Process* KernelCore::CurrentProcess() const {
return impl->current_process;
}
const std::vector<std::shared_ptr<Process>>& KernelCore::GetProcessList() const {
return impl->process_list;
}
Kernel::GlobalSchedulerContext& KernelCore::GlobalSchedulerContext() {
return *impl->global_scheduler_context;
}
const Kernel::GlobalSchedulerContext& KernelCore::GlobalSchedulerContext() const {
return *impl->global_scheduler_context;
}
Kernel::KScheduler& KernelCore::Scheduler(std::size_t id) {
return *impl->schedulers[id];
}
const Kernel::KScheduler& KernelCore::Scheduler(std::size_t id) const {
return *impl->schedulers[id];
}
Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) {
return impl->cores[id];
}
const Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) const {
return impl->cores[id];
}
Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() {
u32 core_id = impl->GetCurrentHostThreadID();
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
return impl->cores[core_id];
}
const Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() const {
u32 core_id = impl->GetCurrentHostThreadID();
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
return impl->cores[core_id];
}
Kernel::KScheduler* KernelCore::CurrentScheduler() {
u32 core_id = impl->GetCurrentHostThreadID();
if (core_id >= Core::Hardware::NUM_CPU_CORES) {
// This is expected when called from not a guest thread
return {};
}
return impl->schedulers[core_id].get();
}
std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& KernelCore::Interrupts() {
return impl->interrupts;
}
2020-04-01 18:28:49 -03:00
const std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& KernelCore::Interrupts()
const {
return impl->interrupts;
}
Kernel::Synchronization& KernelCore::Synchronization() {
return impl->synchronization;
}
const Kernel::Synchronization& KernelCore::Synchronization() const {
return impl->synchronization;
}
2020-02-14 11:56:27 -03:00
Kernel::TimeManager& KernelCore::TimeManager() {
return impl->time_manager;
}
const Kernel::TimeManager& KernelCore::TimeManager() const {
return impl->time_manager;
}
Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() {
return *impl->exclusive_monitor;
}
const Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() const {
return *impl->exclusive_monitor;
}
void KernelCore::InvalidateAllInstructionCaches() {
for (auto& physical_core : impl->cores) {
physical_core.ArmInterface().ClearInstructionCache();
}
}
void KernelCore::InvalidateCpuInstructionCacheRange(VAddr addr, std::size_t size) {
for (auto& physical_core : impl->cores) {
if (!physical_core.IsInitialized()) {
continue;
}
physical_core.ArmInterface().InvalidateCacheRange(addr, size);
}
}
void KernelCore::PrepareReschedule(std::size_t id) {
// TODO: Reimplement, this
}
void KernelCore::AddNamedPort(std::string name, std::shared_ptr<ClientPort> port) {
impl->named_ports.emplace(std::move(name), std::move(port));
}
KernelCore::NamedPortTable::iterator KernelCore::FindNamedPort(const std::string& name) {
return impl->named_ports.find(name);
}
KernelCore::NamedPortTable::const_iterator KernelCore::FindNamedPort(
const std::string& name) const {
return impl->named_ports.find(name);
}
bool KernelCore::IsValidNamedPort(NamedPortTable::const_iterator port) const {
return port != impl->named_ports.cend();
}
u32 KernelCore::CreateNewObjectID() {
return impl->next_object_id++;
}
u64 KernelCore::CreateNewThreadID() {
return impl->next_thread_id++;
}
u64 KernelCore::CreateNewKernelProcessID() {
return impl->next_kernel_process_id++;
}
u64 KernelCore::CreateNewUserProcessID() {
return impl->next_user_process_id++;
}
Kernel::HandleTable& KernelCore::GlobalHandleTable() {
return impl->global_handle_table;
}
const Kernel::HandleTable& KernelCore::GlobalHandleTable() const {
return impl->global_handle_table;
}
void KernelCore::RegisterCoreThread(std::size_t core_id) {
impl->RegisterCoreThread(core_id);
}
void KernelCore::RegisterHostThread() {
impl->RegisterHostThread();
}
2020-02-22 11:27:40 -03:00
u32 KernelCore::GetCurrentHostThreadID() const {
return impl->GetCurrentHostThreadID();
}
2020-02-22 11:27:40 -03:00
Core::EmuThreadHandle KernelCore::GetCurrentEmuThreadID() const {
return impl->GetCurrentEmuThreadID();
}
Memory::MemoryManager& KernelCore::MemoryManager() {
return *impl->memory_manager;
}
const Memory::MemoryManager& KernelCore::MemoryManager() const {
return *impl->memory_manager;
}
Memory::SlabHeap<Memory::Page>& KernelCore::GetUserSlabHeapPages() {
return *impl->user_slab_heap_pages;
}
const Memory::SlabHeap<Memory::Page>& KernelCore::GetUserSlabHeapPages() const {
return *impl->user_slab_heap_pages;
}
Kernel::SharedMemory& KernelCore::GetHidSharedMem() {
return *impl->hid_shared_mem;
}
const Kernel::SharedMemory& KernelCore::GetHidSharedMem() const {
return *impl->hid_shared_mem;
}
Kernel::SharedMemory& KernelCore::GetFontSharedMem() {
return *impl->font_shared_mem;
}
const Kernel::SharedMemory& KernelCore::GetFontSharedMem() const {
return *impl->font_shared_mem;
}
Kernel::SharedMemory& KernelCore::GetIrsSharedMem() {
return *impl->irs_shared_mem;
}
const Kernel::SharedMemory& KernelCore::GetIrsSharedMem() const {
return *impl->irs_shared_mem;
}
Kernel::SharedMemory& KernelCore::GetTimeSharedMem() {
return *impl->time_shared_mem;
}
const Kernel::SharedMemory& KernelCore::GetTimeSharedMem() const {
return *impl->time_shared_mem;
}
void KernelCore::Suspend(bool in_suspention) {
const bool should_suspend = exception_exited || in_suspention;
{
KScopedSchedulerLock lock(*this);
ThreadStatus status = should_suspend ? ThreadStatus::Ready : ThreadStatus::WaitSleep;
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
impl->suspend_threads[i]->SetStatus(status);
}
}
}
bool KernelCore::IsMulticore() const {
return impl->is_multicore;
}
void KernelCore::ExceptionalExit() {
exception_exited = true;
Suspend(true);
}
void KernelCore::EnterSVCProfile() {
std::size_t core = impl->GetCurrentHostThreadID();
impl->svc_ticks[core] = MicroProfileEnter(MICROPROFILE_TOKEN(Kernel_SVC));
}
void KernelCore::ExitSVCProfile() {
std::size_t core = impl->GetCurrentHostThreadID();
MicroProfileLeave(MICROPROFILE_TOKEN(Kernel_SVC), impl->svc_ticks[core]);
}
std::weak_ptr<Kernel::ServiceThread> KernelCore::CreateServiceThread(const std::string& name) {
auto service_thread = std::make_shared<Kernel::ServiceThread>(*this, 1, name);
impl->service_threads.emplace(service_thread);
return service_thread;
}
void KernelCore::ReleaseServiceThread(std::weak_ptr<Kernel::ServiceThread> service_thread) {
if (auto strong_ptr = service_thread.lock()) {
impl->service_threads.erase(strong_ptr);
}
}
2018-01-01 15:25:37 -03:00
} // namespace Kernel