suyu/src/core/hle/kernel/svc.cpp

723 lines
26 KiB
C++
Raw Normal View History

// Copyright 2014 Citra Emulator Project
2014-12-17 02:38:14 -03:00
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2015-05-06 04:06:12 -03:00
#include "common/logging/log.h"
#include "common/microprofile.h"
2018-01-04 21:45:15 -03:00
#include "common/string_util.h"
#include "core/core_timing.h"
2016-05-22 13:30:13 -04:00
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/client_session.h"
#include "core/hle/kernel/handle_table.h"
2018-01-01 16:38:34 -03:00
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/object_address_table.h"
#include "core/hle/kernel/process.h"
2017-12-31 17:58:16 -03:00
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/semaphore.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/svc_wrap.h"
#include "core/hle/kernel/sync_object.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/lock.h"
#include "core/hle/result.h"
#include "core/hle/service/service.h"
namespace Kernel {
2017-12-28 17:29:52 -03:00
/// Set the process heap to a given Size. It can both extend and shrink the heap.
static ResultCode SetHeapSize(VAddr* heap_addr, u64 heap_size) {
2017-12-28 23:38:38 -03:00
LOG_TRACE(Kernel_SVC, "called, heap_size=0x%llx", heap_size);
auto& process = *g_current_process;
CASCADE_RESULT(*heap_addr,
process.HeapAllocate(Memory::HEAP_VADDR, heap_size, VMAPermission::ReadWrite));
2017-12-28 17:29:52 -03:00
return RESULT_SUCCESS;
}
2017-12-28 23:38:38 -03:00
/// Maps a memory range into a different range.
static ResultCode MapMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
LOG_TRACE(Kernel_SVC, "called, dst_addr=0x%llx, src_addr=0x%llx, size=0x%llx", dst_addr,
src_addr, size);
return g_current_process->MirrorMemory(dst_addr, src_addr, size);
2017-12-28 23:38:38 -03:00
}
2017-12-31 17:22:49 -03:00
/// Unmaps a region that was previously mapped with svcMapMemory
static ResultCode UnmapMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
LOG_TRACE(Kernel_SVC, "called, dst_addr=0x%llx, src_addr=0x%llx, size=0x%llx", dst_addr,
2018-01-01 16:38:34 -03:00
src_addr, size);
return g_current_process->UnmapMemory(dst_addr, src_addr, size);
2017-12-31 17:22:49 -03:00
}
/// Connect to an OS service given the port name, returns the handle to the port to out
static ResultCode ConnectToPort(Handle* out_handle, VAddr port_name_address) {
if (!Memory::IsValidVirtualAddress(port_name_address))
return ERR_NOT_FOUND;
static constexpr std::size_t PortNameMaxLength = 11;
// Read 1 char beyond the max allowed port name to detect names that are too long.
std::string port_name = Memory::ReadCString(port_name_address, PortNameMaxLength + 1);
if (port_name.size() > PortNameMaxLength)
return ERR_PORT_NAME_TOO_LONG;
2017-10-14 18:35:21 -03:00
LOG_TRACE(Kernel_SVC, "called port_name=%s", port_name.c_str());
auto it = Service::g_kernel_named_ports.find(port_name);
if (it == Service::g_kernel_named_ports.end()) {
LOG_WARNING(Kernel_SVC, "tried to connect to unknown port: %s", port_name.c_str());
return ERR_NOT_FOUND;
}
auto client_port = it->second;
SharedPtr<ClientSession> client_session;
CASCADE_RESULT(client_session, client_port->Connect());
// Return the client session
CASCADE_RESULT(*out_handle, g_handle_table.Create(client_session));
return RESULT_SUCCESS;
}
2016-12-08 13:06:19 -03:00
/// Makes a blocking IPC call to an OS service.
static ResultCode SendSyncRequest(Handle handle) {
SharedPtr<SyncObject> session = g_handle_table.Get<SyncObject>(handle);
2017-12-30 15:40:28 -03:00
if (!session) {
LOG_ERROR(Kernel_SVC, "called with invalid handle=0x%08X", handle);
return ERR_INVALID_HANDLE;
}
LOG_TRACE(Kernel_SVC, "called handle=0x%08X(%s)", handle, session->GetName().c_str());
Core::System::GetInstance().PrepareReschedule();
// TODO(Subv): svcSendSyncRequest should put the caller thread to sleep while the server
// responds and cause a reschedule.
return session->SendSyncRequest(GetCurrentThread());
}
/// Get the ID for the specified thread.
static ResultCode GetThreadId(u32* thread_id, Handle thread_handle) {
2017-12-30 15:40:28 -03:00
LOG_TRACE(Kernel_SVC, "called thread=0x%08X", thread_handle);
const SharedPtr<Thread> thread = g_handle_table.Get<Thread>(thread_handle);
2017-12-30 15:40:28 -03:00
if (!thread) {
return ERR_INVALID_HANDLE;
}
*thread_id = thread->GetThreadId();
return RESULT_SUCCESS;
}
/// Get the ID of the specified process
static ResultCode GetProcessId(u32* process_id, Handle process_handle) {
LOG_TRACE(Kernel_SVC, "called process=0x%08X", process_handle);
const SharedPtr<Process> process = g_handle_table.Get<Process>(process_handle);
2017-12-30 15:40:28 -03:00
if (!process) {
return ERR_INVALID_HANDLE;
}
*process_id = process->process_id;
return RESULT_SUCCESS;
}
/// Default thread wakeup callback for WaitSynchronization
static void DefaultThreadWakeupCallback(ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object) {
ASSERT(thread->status == THREADSTATUS_WAIT_SYNCH_ANY);
if (reason == ThreadWakeupReason::Timeout) {
thread->SetWaitSynchronizationResult(RESULT_TIMEOUT);
return;
}
ASSERT(reason == ThreadWakeupReason::Signal);
thread->SetWaitSynchronizationResult(RESULT_SUCCESS);
};
/// Wait for a kernel object to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization1(
SharedPtr<WaitObject> object, Thread* thread, s64 nano_seconds = -1,
std::function<Thread::WakeupCallback> wakeup_callback = DefaultThreadWakeupCallback) {
if (!object) {
return ERR_INVALID_HANDLE;
}
if (object->ShouldWait(thread)) {
if (nano_seconds == 0) {
return RESULT_TIMEOUT;
}
thread->wait_objects = {object};
object->AddWaitingThread(thread);
thread->status = THREADSTATUS_WAIT_SYNCH_ANY;
// Create an event to wake the thread up after the specified nanosecond delay has passed
thread->WakeAfterDelay(nano_seconds);
thread->wakeup_callback = wakeup_callback;
Core::System::GetInstance().PrepareReschedule();
} else {
object->Acquire(thread);
}
return RESULT_SUCCESS;
}
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization(VAddr handles_address, u64 handle_count, s64 nano_seconds) {
LOG_TRACE(Kernel_SVC, "called handles_address=0x%llx, handle_count=%d, nano_seconds=%d",
handles_address, handle_count, nano_seconds);
if (!Memory::IsValidVirtualAddress(handles_address))
return ERR_INVALID_POINTER;
// Check if 'handle_count' is invalid
if (handle_count < 0)
return ERR_OUT_OF_RANGE;
using ObjectPtr = SharedPtr<WaitObject>;
std::vector<ObjectPtr> objects(handle_count);
for (int i = 0; i < handle_count; ++i) {
Handle handle = Memory::Read32(handles_address + i * sizeof(Handle));
auto object = g_handle_table.Get<WaitObject>(handle);
if (object == nullptr)
return ERR_INVALID_HANDLE;
objects[i] = object;
}
// Just implement for a single handle for now
ASSERT(handle_count == 1);
return WaitSynchronization1(objects[0], GetCurrentThread(), nano_seconds);
}
2018-01-01 16:02:26 -03:00
/// Attempts to locks a mutex, creating it if it does not already exist
static ResultCode LockMutex(Handle holding_thread_handle, VAddr mutex_addr,
Handle requesting_thread_handle) {
LOG_TRACE(Kernel_SVC,
"called holding_thread_handle=0x%08X, mutex_addr=0x%llx, "
"requesting_current_thread_handle=0x%08X",
holding_thread_handle, mutex_addr, requesting_thread_handle);
SharedPtr<Thread> holding_thread = g_handle_table.Get<Thread>(holding_thread_handle);
SharedPtr<Thread> requesting_thread = g_handle_table.Get<Thread>(requesting_thread_handle);
2018-01-01 16:02:26 -03:00
ASSERT(holding_thread);
ASSERT(requesting_thread);
SharedPtr<Mutex> mutex = g_object_address_table.Get<Mutex>(mutex_addr);
2018-01-01 16:02:26 -03:00
if (!mutex) {
// Create a new mutex for the specified address if one does not already exist
mutex = Mutex::Create(holding_thread, mutex_addr);
2018-01-01 16:02:26 -03:00
mutex->name = Common::StringFromFormat("mutex-%llx", mutex_addr);
}
return WaitSynchronization1(mutex, requesting_thread.get());
2018-01-01 16:02:26 -03:00
}
2018-01-01 16:04:36 -03:00
/// Unlock a mutex
static ResultCode UnlockMutex(VAddr mutex_addr) {
LOG_TRACE(Kernel_SVC, "called mutex_addr=0x%llx", mutex_addr);
SharedPtr<Mutex> mutex = g_object_address_table.Get<Mutex>(mutex_addr);
2018-01-01 16:04:36 -03:00
ASSERT(mutex);
return mutex->Release(GetCurrentThread());
2018-01-01 16:04:36 -03:00
}
/// Break program execution
static void Break(u64 unk_0, u64 unk_1, u64 unk_2) {
LOG_CRITICAL(Debug_Emulated, "Emulated program broke execution!");
ASSERT(false);
}
/// Used to output a message on a debug hardware unit - does nothing on a retail unit
2018-01-01 16:38:34 -03:00
static void OutputDebugString(VAddr address, s32 len) {
std::vector<char> string(len);
Memory::ReadBlock(address, string.data(), len);
LOG_DEBUG(Debug_Emulated, "%.*s", len, string.data());
}
2018-01-01 18:01:06 -03:00
/// Gets system/memory information for the current process
static ResultCode GetInfo(u64* result, u64 info_id, u64 handle, u64 info_sub_id) {
2018-01-01 18:01:06 -03:00
LOG_TRACE(Kernel_SVC, "called info_id=0x%X, info_sub_id=0x%X, handle=0x%08X", info_id,
info_sub_id, handle);
auto& vm_manager = g_current_process->vm_manager;
2018-01-01 18:01:06 -03:00
switch (static_cast<GetInfoType>(info_id)) {
case GetInfoType::TotalMemoryUsage:
*result = vm_manager.GetTotalMemoryUsage();
break;
case GetInfoType::TotalHeapUsage:
*result = vm_manager.GetTotalHeapUsage();
break;
case GetInfoType::RandomEntropy:
*result = 0;
break;
case GetInfoType::AddressSpaceBaseAddr:
*result = vm_manager.GetAddressSpaceBaseAddr();
break;
case GetInfoType::AddressSpaceSize:
*result = vm_manager.GetAddressSpaceSize();
break;
case GetInfoType::NewMapRegionBaseAddr:
*result = vm_manager.GetNewMapRegionBaseAddr();
break;
case GetInfoType::NewMapRegionSize:
*result = vm_manager.GetNewMapRegionSize();
break;
default:
UNIMPLEMENTED();
2015-05-17 02:06:59 -03:00
}
2018-01-01 18:01:06 -03:00
return RESULT_SUCCESS;
}
/// Gets the priority for the specified thread
2017-12-31 18:06:11 -03:00
static ResultCode GetThreadPriority(u32* priority, Handle handle) {
const SharedPtr<Thread> thread = g_handle_table.Get<Thread>(handle);
2017-12-31 18:06:11 -03:00
if (!thread)
return ERR_INVALID_HANDLE;
*priority = thread->GetPriority();
return RESULT_SUCCESS;
}
2017-12-31 17:58:16 -03:00
/// Sets the priority for the specified thread
static ResultCode SetThreadPriority(Handle handle, u32 priority) {
if (priority > THREADPRIO_LOWEST) {
return ERR_OUT_OF_RANGE;
2017-12-31 17:58:16 -03:00
}
SharedPtr<Thread> thread = g_handle_table.Get<Thread>(handle);
2017-12-31 17:58:16 -03:00
if (!thread)
return ERR_INVALID_HANDLE;
2017-12-31 17:58:16 -03:00
// Note: The kernel uses the current process's resource limit instead of
// the one from the thread owner's resource limit.
SharedPtr<ResourceLimit>& resource_limit = g_current_process->resource_limit;
if (resource_limit->GetMaxResourceValue(ResourceTypes::PRIORITY) > priority) {
return ERR_NOT_AUTHORIZED;
2017-12-31 17:58:16 -03:00
}
thread->SetPriority(priority);
thread->UpdatePriority();
// Update the mutexes that this thread is waiting for
for (auto& mutex : thread->pending_mutexes)
mutex->UpdatePriority();
Core::System::GetInstance().PrepareReschedule();
return RESULT_SUCCESS;
}
/// Get which CPU core is executing the current thread
static u32 GetCurrentProcessorNumber() {
LOG_WARNING(Kernel_SVC, "(STUBBED) called, defaulting to processor 0");
return 0;
}
/// Query process memory
static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* /*page_info*/,
Handle process_handle, u64 addr) {
SharedPtr<Process> process = g_handle_table.Get<Process>(process_handle);
2017-12-30 15:40:28 -03:00
if (!process) {
return ERR_INVALID_HANDLE;
}
auto vma = process->vm_manager.FindVMA(addr);
memory_info->attributes = 0;
if (vma == g_current_process->vm_manager.vma_map.end()) {
memory_info->base_address = 0;
memory_info->permission = static_cast<u32>(VMAPermission::None);
memory_info->size = 0;
memory_info->type = static_cast<u32>(MemoryState::Free);
} else {
memory_info->base_address = vma->second.base;
memory_info->permission = static_cast<u32>(vma->second.permissions);
memory_info->size = vma->second.size;
memory_info->type = static_cast<u32>(vma->second.meminfo_state);
}
2017-12-30 15:40:28 -03:00
LOG_TRACE(Kernel_SVC, "called process=0x%08X addr=%llx", process_handle, addr);
return RESULT_SUCCESS;
}
/// Query memory
static ResultCode QueryMemory(MemoryInfo* memory_info, PageInfo* page_info, VAddr addr) {
2017-10-14 18:35:21 -03:00
LOG_TRACE(Kernel_SVC, "called, addr=%llx", addr);
return QueryProcessMemory(memory_info, page_info, CurrentProcess, addr);
}
2018-01-01 16:38:34 -03:00
/// Exits the current process
static void ExitProcess() {
LOG_INFO(Kernel_SVC, "Process %u exiting", g_current_process->process_id);
2018-01-01 16:38:34 -03:00
ASSERT_MSG(g_current_process->status == ProcessStatus::Running, "Process has already exited");
2018-01-01 16:38:34 -03:00
g_current_process->status = ProcessStatus::Exited;
2018-01-01 16:38:34 -03:00
// Stop all the process threads that are currently waiting for objects.
auto& thread_list = GetThreadList();
2018-01-01 16:38:34 -03:00
for (auto& thread : thread_list) {
if (thread->owner_process != g_current_process)
2018-01-01 16:38:34 -03:00
continue;
if (thread == GetCurrentThread())
2018-01-01 16:38:34 -03:00
continue;
// TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->status == THREADSTATUS_WAIT_SYNCH_ANY ||
thread->status == THREADSTATUS_WAIT_SYNCH_ALL,
"Exiting processes with non-waiting threads is currently unimplemented");
thread->Stop();
}
// Kill the current thread
GetCurrentThread()->Stop();
2018-01-01 16:38:34 -03:00
Core::System::GetInstance().PrepareReschedule();
}
2017-12-31 18:10:01 -03:00
/// Creates a new thread
static ResultCode CreateThread(Handle* out_handle, VAddr entry_point, u64 arg, VAddr stack_top,
u32 priority, s32 processor_id) {
std::string name = Common::StringFromFormat("unknown-%llx", entry_point);
2017-12-31 18:10:01 -03:00
if (priority > THREADPRIO_LOWEST) {
return ERR_OUT_OF_RANGE;
2017-12-31 18:10:01 -03:00
}
SharedPtr<ResourceLimit>& resource_limit = g_current_process->resource_limit;
if (resource_limit->GetMaxResourceValue(ResourceTypes::PRIORITY) > priority) {
return ERR_NOT_AUTHORIZED;
2017-12-31 18:10:01 -03:00
}
if (processor_id == THREADPROCESSORID_DEFAULT) {
// Set the target CPU to the one specified in the process' exheader.
processor_id = g_current_process->ideal_processor;
2017-12-31 18:10:01 -03:00
ASSERT(processor_id != THREADPROCESSORID_DEFAULT);
}
switch (processor_id) {
case THREADPROCESSORID_0:
break;
case THREADPROCESSORID_ALL:
LOG_INFO(Kernel_SVC,
"Newly created thread is allowed to be run in any Core, unimplemented.");
break;
case THREADPROCESSORID_1:
LOG_ERROR(Kernel_SVC,
"Newly created thread must run in the SysCore (Core1), unimplemented.");
break;
default:
// TODO(bunnei): Implement support for other processor IDs
ASSERT_MSG(false, "Unsupported thread processor ID: %d", processor_id);
break;
}
CASCADE_RESULT(SharedPtr<Thread> thread,
Thread::Create(name, entry_point, priority, arg, processor_id, stack_top,
g_current_process));
CASCADE_RESULT(thread->guest_handle, g_handle_table.Create(thread));
*out_handle = thread->guest_handle;
2017-12-31 18:10:01 -03:00
Core::System::GetInstance().PrepareReschedule();
LOG_TRACE(Kernel_SVC,
"called entrypoint=0x%08X (%s), arg=0x%08X, stacktop=0x%08X, "
"threadpriority=0x%08X, processorid=0x%08X : created handle=0x%08X",
entry_point, name.c_str(), arg, stack_top, priority, processor_id, *out_handle);
return RESULT_SUCCESS;
}
2017-12-30 15:40:28 -03:00
/// Starts the thread for the provided handle
2017-12-30 15:37:07 -03:00
static ResultCode StartThread(Handle thread_handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x%08X", thread_handle);
const SharedPtr<Thread> thread = g_handle_table.Get<Thread>(thread_handle);
2017-12-30 15:37:07 -03:00
if (!thread) {
return ERR_INVALID_HANDLE;
}
thread->ResumeFromWait();
return RESULT_SUCCESS;
}
2017-12-31 18:11:27 -03:00
/// Called when a thread exits
static void ExitThread() {
LOG_TRACE(Kernel_SVC, "called, pc=0x%08X", Core::CPU().GetPC());
ExitCurrentThread();
2017-12-31 18:11:27 -03:00
Core::System::GetInstance().PrepareReschedule();
}
/// Sleep the current thread
static void SleepThread(s64 nanoseconds) {
LOG_TRACE(Kernel_SVC, "called nanoseconds=%lld", nanoseconds);
// Don't attempt to yield execution if there are no available threads to run,
// this way we avoid a useless reschedule to the idle thread.
if (nanoseconds == 0 && !HaveReadyThreads())
return;
// Sleep current thread and check for next thread to schedule
WaitCurrentThread_Sleep();
// Create an event to wake the thread up after the specified nanosecond delay has passed
GetCurrentThread()->WakeAfterDelay(nanoseconds);
Core::System::GetInstance().PrepareReschedule();
}
/// Signal process wide key atomic
static ResultCode WaitProcessWideKeyAtomic(VAddr mutex_addr, VAddr semaphore_addr,
Handle thread_handle, s64 nano_seconds) {
LOG_TRACE(Kernel_SVC,
"called mutex_addr=%llx, semaphore_addr=%llx, thread_handle=0x%08X, timeout=%d",
mutex_addr, semaphore_addr, thread_handle, nano_seconds);
SharedPtr<Thread> thread = g_handle_table.Get<Thread>(thread_handle);
ASSERT(thread);
SharedPtr<Mutex> mutex = g_object_address_table.Get<Mutex>(mutex_addr);
if (!mutex) {
// Create a new mutex for the specified address if one does not already exist
mutex = Mutex::Create(thread, mutex_addr);
mutex->name = Common::StringFromFormat("mutex-%llx", mutex_addr);
}
SharedPtr<Semaphore> semaphore = g_object_address_table.Get<Semaphore>(semaphore_addr);
if (!semaphore) {
// Create a new semaphore for the specified address if one does not already exist
semaphore = Semaphore::Create(semaphore_addr, mutex_addr).Unwrap();
semaphore->name = Common::StringFromFormat("semaphore-%llx", semaphore_addr);
}
ASSERT(semaphore->available_count == 0);
ASSERT(semaphore->mutex_addr == mutex_addr);
CASCADE_CODE(WaitSynchronization1(
semaphore, thread.get(), nano_seconds,
[mutex](ThreadWakeupReason reason, SharedPtr<Thread> thread, SharedPtr<WaitObject> object) {
ASSERT(thread->status == THREADSTATUS_WAIT_SYNCH_ANY);
if (reason == ThreadWakeupReason::Timeout) {
thread->SetWaitSynchronizationResult(RESULT_TIMEOUT);
return;
}
ASSERT(reason == ThreadWakeupReason::Signal);
thread->SetWaitSynchronizationResult(WaitSynchronization1(mutex, thread.get()));
thread->SetWaitSynchronizationOutput(thread->GetWaitObjectIndex(object.get()));
}));
mutex->Release(thread.get());
return RESULT_SUCCESS;
}
/// Signal process wide key
static ResultCode SignalProcessWideKey(VAddr semaphore_addr, s32 target) {
LOG_TRACE(Kernel_SVC, "called, semaphore_addr=0x%llx, target=0x%08x", semaphore_addr, target);
// Wakeup all or one thread - Any other value is unimplemented
ASSERT(target == -1 || target == 1);
SharedPtr<Semaphore> semaphore = g_object_address_table.Get<Semaphore>(semaphore_addr);
if (!semaphore) {
// Create a new semaphore for the specified address if one does not already exist
semaphore = Semaphore::Create(semaphore_addr).Unwrap();
semaphore->name = Common::StringFromFormat("semaphore-%llx", semaphore_addr);
}
CASCADE_CODE(semaphore->Release(target));
if (semaphore->mutex_addr) {
// If a mutex was created for this semaphore, wait the current thread on it
SharedPtr<Mutex> mutex = g_object_address_table.Get<Mutex>(semaphore->mutex_addr);
return WaitSynchronization1(mutex, GetCurrentThread());
}
return RESULT_SUCCESS;
}
/// Close a handle
static ResultCode CloseHandle(Handle handle) {
LOG_TRACE(Kernel_SVC, "Closing handle 0x%08X", handle);
return g_handle_table.Close(handle);
}
2015-05-06 00:04:25 -03:00
namespace {
struct FunctionDef {
using Func = void();
2015-05-06 00:04:25 -03:00
u32 id;
Func* func;
const char* name;
};
} // namespace
2015-05-06 00:04:25 -03:00
static const FunctionDef SVC_Table[] = {
{0x00, nullptr, "Unknown"},
{0x01, SvcWrap<SetHeapSize>, "SetHeapSize"},
{0x02, nullptr, "SetMemoryPermission"},
{0x03, nullptr, "SetMemoryAttribute"},
{0x04, SvcWrap<MapMemory>, "MapMemory"},
{0x05, SvcWrap<UnmapMemory>, "UnmapMemory"},
{0x06, SvcWrap<QueryMemory>, "QueryMemory"},
{0x07, SvcWrap<ExitProcess>, "ExitProcess"},
{0x08, SvcWrap<CreateThread>, "CreateThread"},
{0x09, SvcWrap<StartThread>, "StartThread"},
{0x0A, SvcWrap<ExitThread>, "ExitThread"},
{0x0B, SvcWrap<SleepThread>, "SleepThread"},
{0x0C, SvcWrap<GetThreadPriority>, "GetThreadPriority"},
{0x0D, SvcWrap<SetThreadPriority>, "SetThreadPriority"},
{0x0E, nullptr, "GetThreadCoreMask"},
{0x0F, nullptr, "SetThreadCoreMask"},
{0x10, SvcWrap<GetCurrentProcessorNumber>, "GetCurrentProcessorNumber"},
{0x11, nullptr, "SignalEvent"},
{0x12, nullptr, "ClearEvent"},
{0x13, nullptr, "MapSharedMemory"},
{0x14, nullptr, "UnmapSharedMemory"},
{0x15, nullptr, "CreateTransferMemory"},
{0x16, SvcWrap<CloseHandle>, "CloseHandle"},
{0x17, nullptr, "ResetSignal"},
{0x18, SvcWrap<WaitSynchronization>, "WaitSynchronization"},
{0x19, nullptr, "CancelSynchronization"},
{0x1A, SvcWrap<LockMutex>, "LockMutex"},
{0x1B, SvcWrap<UnlockMutex>, "UnlockMutex"},
{0x1C, SvcWrap<WaitProcessWideKeyAtomic>, "WaitProcessWideKeyAtomic"},
{0x1D, SvcWrap<SignalProcessWideKey>, "SignalProcessWideKey"},
{0x1E, nullptr, "GetSystemTick"},
{0x1F, SvcWrap<ConnectToPort>, "ConnectToPort"},
{0x20, nullptr, "SendSyncRequestLight"},
{0x21, SvcWrap<SendSyncRequest>, "SendSyncRequest"},
{0x22, nullptr, "SendSyncRequestWithUserBuffer"},
{0x23, nullptr, "SendAsyncRequestWithUserBuffer"},
{0x24, SvcWrap<GetProcessId>, "GetProcessId"},
{0x25, SvcWrap<GetThreadId>, "GetThreadId"},
{0x26, SvcWrap<Break>, "Break"},
{0x27, SvcWrap<OutputDebugString>, "OutputDebugString"},
{0x28, nullptr, "ReturnFromException"},
{0x29, SvcWrap<GetInfo>, "GetInfo"},
{0x2A, nullptr, "FlushEntireDataCache"},
{0x2B, nullptr, "FlushDataCache"},
{0x2C, nullptr, "MapPhysicalMemory"},
{0x2D, nullptr, "UnmapPhysicalMemory"},
{0x2E, nullptr, "Unknown"},
{0x2F, nullptr, "GetLastThreadInfo"},
{0x30, nullptr, "GetResourceLimitLimitValue"},
{0x31, nullptr, "GetResourceLimitCurrentValue"},
{0x32, nullptr, "SetThreadActivity"},
{0x33, nullptr, "GetThreadContext"},
{0x34, nullptr, "Unknown"},
{0x35, nullptr, "Unknown"},
{0x36, nullptr, "Unknown"},
{0x37, nullptr, "Unknown"},
{0x38, nullptr, "Unknown"},
{0x39, nullptr, "Unknown"},
{0x3A, nullptr, "Unknown"},
{0x3B, nullptr, "Unknown"},
{0x3C, nullptr, "DumpInfo"},
{0x3D, nullptr, "Unknown"},
{0x3E, nullptr, "Unknown"},
{0x3F, nullptr, "Unknown"},
{0x40, nullptr, "CreateSession"},
{0x41, nullptr, "AcceptSession"},
{0x42, nullptr, "ReplyAndReceiveLight"},
{0x43, nullptr, "ReplyAndReceive"},
{0x44, nullptr, "ReplyAndReceiveWithUserBuffer"},
{0x45, nullptr, "CreateEvent"},
{0x46, nullptr, "Unknown"},
{0x47, nullptr, "Unknown"},
{0x48, nullptr, "Unknown"},
{0x49, nullptr, "Unknown"},
{0x4A, nullptr, "Unknown"},
{0x4B, nullptr, "Unknown"},
{0x4C, nullptr, "Unknown"},
{0x4D, nullptr, "SleepSystem"},
{0x4E, nullptr, "ReadWriteRegister"},
{0x4F, nullptr, "SetProcessActivity"},
{0x50, nullptr, "CreateSharedMemory"},
{0x51, nullptr, "MapTransferMemory"},
{0x52, nullptr, "UnmapTransferMemory"},
{0x53, nullptr, "CreateInterruptEvent"},
{0x54, nullptr, "QueryPhysicalAddress"},
{0x55, nullptr, "QueryIoMapping"},
{0x56, nullptr, "CreateDeviceAddressSpace"},
{0x57, nullptr, "AttachDeviceAddressSpace"},
{0x58, nullptr, "DetachDeviceAddressSpace"},
{0x59, nullptr, "MapDeviceAddressSpaceByForce"},
{0x5A, nullptr, "MapDeviceAddressSpaceAligned"},
{0x5B, nullptr, "MapDeviceAddressSpace"},
{0x5C, nullptr, "UnmapDeviceAddressSpace"},
{0x5D, nullptr, "InvalidateProcessDataCache"},
{0x5E, nullptr, "StoreProcessDataCache"},
{0x5F, nullptr, "FlushProcessDataCache"},
{0x60, nullptr, "DebugActiveProcess"},
{0x61, nullptr, "BreakDebugProcess"},
{0x62, nullptr, "TerminateDebugProcess"},
{0x63, nullptr, "GetDebugEvent"},
{0x64, nullptr, "ContinueDebugEvent"},
{0x65, nullptr, "GetProcessList"},
{0x66, nullptr, "GetThreadList"},
{0x67, nullptr, "GetDebugThreadContext"},
{0x68, nullptr, "SetDebugThreadContext"},
{0x69, nullptr, "QueryDebugProcessMemory"},
{0x6A, nullptr, "ReadDebugProcessMemory"},
{0x6B, nullptr, "WriteDebugProcessMemory"},
{0x6C, nullptr, "SetHardwareBreakPoint"},
{0x6D, nullptr, "GetDebugThreadParam"},
{0x6E, nullptr, "Unknown"},
{0x6F, nullptr, "Unknown"},
{0x70, nullptr, "CreatePort"},
{0x71, nullptr, "ManageNamedPort"},
{0x72, nullptr, "ConnectToPort"},
{0x73, nullptr, "SetProcessMemoryPermission"},
{0x74, nullptr, "MapProcessMemory"},
{0x75, nullptr, "UnmapProcessMemory"},
{0x76, nullptr, "QueryProcessMemory"},
{0x77, nullptr, "MapProcessCodeMemory"},
{0x78, nullptr, "UnmapProcessCodeMemory"},
{0x79, nullptr, "CreateProcess"},
{0x7A, nullptr, "StartProcess"},
{0x7B, nullptr, "TerminateProcess"},
{0x7C, nullptr, "GetProcessInfo"},
{0x7D, nullptr, "CreateResourceLimit"},
{0x7E, nullptr, "SetResourceLimitLimitValue"},
{0x7F, nullptr, "CallSecureMonitor"},
};
static const FunctionDef* GetSVCInfo(u32 func_num) {
2015-05-06 00:04:25 -03:00
if (func_num >= ARRAY_SIZE(SVC_Table)) {
LOG_ERROR(Kernel_SVC, "unknown svc=0x%02X", func_num);
return nullptr;
}
return &SVC_Table[func_num];
}
MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));
void CallSVC(u32 immediate) {
MICROPROFILE_SCOPE(Kernel_SVC);
2015-05-06 00:04:25 -03:00
// Lock the global kernel mutex when we enter the kernel HLE.
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
const FunctionDef* info = GetSVCInfo(immediate);
2015-05-06 00:04:25 -03:00
if (info) {
if (info->func) {
info->func();
} else {
LOG_CRITICAL(Kernel_SVC, "unimplemented SVC function %s(..)", info->name);
2015-05-06 00:04:25 -03:00
}
} else {
LOG_CRITICAL(Kernel_SVC, "unknown SVC function 0x%x", immediate);
2015-05-06 00:04:25 -03:00
}
}
} // namespace Kernel