nxdumptool/include/tasks/data_transfer_task.hpp
Pablo Curiel 50deeeb41b Improve directory layout while we still can.
The directory layout is partially based on the C++ namespaces we're currently using.

Other changes include:

* devoptab: move directory into "core".

* fatfs: move directory into "core".

* GameCardTab: move portions of logic from PopulateList() into their own methods.
* GameCardTab: use a macro to generate the properties table.
* GameCardTab: use a macro to add ListItem elements.
* GameCardTab: update AddApplicationMetadataItems() method to also display the number of DLCs available in the inserted gamecard for each application whenever possible.

* Makefile: remove all extra entries from the INCLUDES variable.

* nxdt_includes: move HOS version structs into their own header file.

* tasks: move code for each individual task into its own file(s).

* title: update titleGetGameCardApplicationMetadataEntries() to also count the number of DLCs available in the inserted gamecard for any given base application.
* title: reorder gamecard application metadata entries by name before returning the buffer in titleGetGameCardApplicationMetadataEntries().
2024-04-30 23:01:42 +02:00

253 lines
11 KiB
C++

/*
* data_transfer_task.hpp
*
* Copyright (c) 2020-2024, DarkMatterCore <pabloacurielz@gmail.com>.
*
* This file is part of nxdumptool (https://github.com/DarkMatterCore/nxdumptool).
*
* nxdumptool is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* nxdumptool is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#pragma once
#ifndef __DATA_TRANSFER_TASK_HPP__
#define __DATA_TRANSFER_TASK_HPP__
#include <borealis.hpp>
#include "../core/nxdt_utils.h"
#include "async_task.hpp"
namespace nxdt::tasks
{
/* Used to hold data transfer progress info. */
typedef struct {
size_t total_size; ///< Total size for the data transfer process.
size_t xfer_size; ///< Number of bytes transferred thus far.
int percentage; ///< Progress percentage.
double speed; ///< Current speed expressed in bytes per second.
std::string eta; ///< Formatted ETA string.
} DataTransferProgress;
/* Custom event type used to push data transfer progress updates. */
typedef brls::Event<const DataTransferProgress&> DataTransferProgressEvent;
/* Class template to asynchronously transfer data on a background thread. */
/* Automatically allocates and registers a RepeatingTask on its own, which is started along with the actual task when AsyncTask::execute() is called. */
/* This internal RepeatingTask is guaranteed to work on the UI thread, and it is also automatically unregistered on object destruction. */
/* Progress updates are pushed through a DataTransferProgressEvent. Make sure to register all event listeners before executing the task. */
template<typename Result, typename... Params>
class DataTransferTask: public AsyncTask<DataTransferProgress, Result, Params...>
{
private:
/* Handles task progress updates on the calling thread. */
class Handler: public brls::RepeatingTask
{
private:
bool finished = false;
DataTransferTask<Result, Params...>* task = nullptr;
protected:
void run(retro_time_t current_time) override final
{
brls::RepeatingTask::run(current_time);
if (this->task && !this->finished)
{
this->finished = this->task->LoopCallback();
if (this->finished) this->pause();
}
}
public:
Handler(retro_time_t interval, DataTransferTask<Result, Params...>* task) : brls::RepeatingTask(interval), task(task) { }
ALWAYS_INLINE bool IsFinished(void)
{
return this->finished;
}
};
typedef std::chrono::time_point<std::chrono::steady_clock> SteadyTimePoint;
static constexpr auto &CurrentSteadyTimePoint = std::chrono::steady_clock::now;
DataTransferProgressEvent progress_event{};
Handler *task_handler = nullptr;
SteadyTimePoint start_time{}, prev_time{}, end_time{};
size_t prev_xfer_size = 0;
bool first_publish_progress = true;
ALWAYS_INLINE std::string FormatTimeString(double seconds)
{
return fmt::format("{:02.0F}H{:02.0F}M{:02.0F}S", std::fmod(seconds, 86400.0) / 3600.0, std::fmod(seconds, 3600.0) / 60.0, std::fmod(seconds, 60.0));
}
void PostExecutionCallback(void)
{
/* Set end time. */
this->end_time = CurrentSteadyTimePoint();
/* Fire task handler immediately to make it store the last result from AsyncTask::LoopCallback(). */
/* We do this here because all subscribers to our progress event will most likely call IsFinished() to check if the task is complete. */
/* That being the case, if the `finished` flag returned by the task handler isn't updated before the progress event subscribers receive the last progress update, */
/* they won't be able to determine if the task has already finished, leading to unsuspected consequences. */
this->task_handler->fireNow();
/* Update progress one last time. */
/* This will effectively invoke the callbacks from all of our progress event subscribers. */
this->OnProgressUpdate(this->GetProgress());
/* Unset long running process state. */
utilsSetLongRunningProcessState(false);
}
protected:
/* Set class as non-copyable and non-moveable. */
NON_COPYABLE(DataTransferTask);
NON_MOVEABLE(DataTransferTask);
/* Runs on the calling thread. */
void OnCancelled(const Result& result) override final
{
NX_IGNORE_ARG(result);
/* Run post execution callback. */
this->PostExecutionCallback();
}
/* Runs on the calling thread. */
void OnPostExecute(const Result& result) override final
{
NX_IGNORE_ARG(result);
/* Run post execution callback. */
this->PostExecutionCallback();
}
/* Runs on the calling thread. */
void OnPreExecute(void) override final
{
/* Set long running process state. */
utilsSetLongRunningProcessState(true);
/* Start task handler. */
this->task_handler->start();
/* Set start time. */
this->start_time = this->prev_time = CurrentSteadyTimePoint();
}
/* Runs on the calling thread. */
void OnProgressUpdate(const DataTransferProgress& progress) override final
{
/* Return immediately if there has been no progress at all. */
bool proceed = (progress.xfer_size > prev_xfer_size || (progress.xfer_size == prev_xfer_size && (!progress.total_size || progress.xfer_size >= progress.total_size ||
this->first_publish_progress)));
if (!proceed) return;
/* Calculate time difference between the last progress update and the current one. */
/* Return immediately if the task hasn't been cancelled and less than 1 second has passed since the last progress update -- but only if */
/* this isn't the last chunk *or* if we don't know the total size and the task is still running . */
AsyncTaskStatus status = this->GetStatus();
SteadyTimePoint cur_time = std::chrono::steady_clock::now();
double diff_time = std::chrono::duration<double>(cur_time - this->prev_time).count();
if (!this->IsCancelled() && diff_time < 1.0 && ((progress.total_size && progress.xfer_size < progress.total_size) || status == AsyncTaskStatus::RUNNING)) return;
/* Calculate transferred data size difference between the last progress update and the current one. */
double diff_xfer_size = static_cast<double>(progress.xfer_size - prev_xfer_size);
/* Calculate transfer speed in bytes per second. */
double speed = (diff_xfer_size / diff_time);
/* Fill struct. */
DataTransferProgress new_progress = progress;
new_progress.speed = speed;
if (progress.total_size && speed > 0.0)
{
/* Calculate remaining data size and ETA if we know the total size. */
double remaining = static_cast<double>(progress.total_size - progress.xfer_size);
double eta = (remaining / speed);
new_progress.eta = this->FormatTimeString(eta);
} else {
/* No total size nor speed means no ETA calculation, sadly. */
new_progress.eta = "";
}
/* Set total size if we don't know it and if this is the final chunk. */
if (!new_progress.total_size && status == AsyncTaskStatus::FINISHED)
{
new_progress.total_size = new_progress.xfer_size;
new_progress.percentage = 100;
}
/* Update class variables. */
this->prev_time = cur_time;
this->prev_xfer_size = progress.xfer_size;
if (this->first_publish_progress) this->first_publish_progress = false;
/* Send updated progress to all listeners. */
this->progress_event.fire(new_progress);
}
public:
DataTransferTask()
{
/* Create task handler. */
this->task_handler = new Handler(DATA_TRANSFER_TASK_INTERVAL, this);
}
~DataTransferTask()
{
/* Stop task handler. Borealis' task manager will take care of deleting it. */
this->task_handler->stop();
/* Unregister all event listeners. */
this->progress_event.unsubscribeAll();
}
/* Returns the last result from AsyncTask::LoopCallback(). Runs on the calling thread. */
ALWAYS_INLINE bool IsFinished(void)
{
return this->task_handler->IsFinished();
}
/* Returns the task duration expressed in seconds. */
/* If the task hasn't finished yet, it returns the number of seconds that have passed since the task was started. */
ALWAYS_INLINE double GetDuration(void)
{
return std::chrono::duration<double>(this->IsFinished() ? (this->end_time - this->start_time) : (CurrentSteadyTimePoint() - this->start_time)).count();
}
/* Returns a human-readable string that represents the task duration. */
/* If the task hasn't finished yet, the string represents the time that has passed since the task was started. */
ALWAYS_INLINE std::string GetDurationString(void)
{
return this->FormatTimeString(this->GetDuration());
}
ALWAYS_INLINE DataTransferProgressEvent::Subscription RegisterListener(DataTransferProgressEvent::Callback cb)
{
return this->progress_event.subscribe(cb);
}
ALWAYS_INLINE void UnregisterListener(DataTransferProgressEvent::Subscription subscription)
{
this->progress_event.unsubscribe(subscription);
}
};
}
#endif /* __DATA_TRANSFER_TASK_HPP__ */