mirror of
https://github.com/DarkMatterCore/nxdumptool.git
synced 2025-01-26 03:03:12 -03:00
4589614183
Makes it possible to browse eMMC partitions and dump data from them. Since we're manually parsing FAT partitions, reading files protected by the FS sysmodule at runtime is possible.
1806 lines
58 KiB
C
1806 lines
58 KiB
C
/*
|
|
* save.c
|
|
*
|
|
* Copyright (c) 2019-2020, shchmue.
|
|
* Copyright (c) 2020-2024, DarkMatterCore <pabloacurielz@gmail.com>.
|
|
*
|
|
* This file is part of nxdumptool (https://github.com/DarkMatterCore/nxdumptool).
|
|
*
|
|
* nxdumptool is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* nxdumptool is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <core/nxdt_utils.h>
|
|
#include <core/save.h>
|
|
|
|
static inline void save_bitmap_set_bit(void *buffer, size_t bit_offset)
|
|
{
|
|
*((u8*)buffer + (bit_offset >> 3)) |= 1 << (bit_offset & 7);
|
|
}
|
|
|
|
static inline void save_bitmap_clear_bit(void *buffer, size_t bit_offset)
|
|
{
|
|
*((u8*)buffer + (bit_offset >> 3)) &= ~(u8)(1 << (bit_offset & 7));
|
|
}
|
|
|
|
static inline u8 save_bitmap_check_bit(const void *buffer, size_t bit_offset)
|
|
{
|
|
return (*((u8*)buffer + (bit_offset >> 3)) & (1 << (bit_offset & 7)));
|
|
}
|
|
|
|
static bool save_duplex_storage_init(duplex_storage_ctx_t *ctx, duplex_fs_layer_info_t *layer, void *bitmap, u64 bitmap_size)
|
|
{
|
|
if (!ctx || !layer || !layer->data_a || !layer->data_b || !layer->info.block_size_power || !bitmap || !bitmap_size)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
ctx->data_a = layer->data_a;
|
|
ctx->data_b = layer->data_b;
|
|
ctx->bitmap_storage = (u8*)bitmap;
|
|
ctx->block_size = (1 << layer->info.block_size_power);
|
|
ctx->bitmap.data = ctx->bitmap_storage;
|
|
|
|
ctx->bitmap.bitmap = calloc(1, bitmap_size >> 3);
|
|
if (!ctx->bitmap.bitmap)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for duplex bitmap!");
|
|
return false;
|
|
}
|
|
|
|
u32 bits_remaining = bitmap_size;
|
|
u32 bitmap_pos = 0;
|
|
u32 *buffer_pos = (u32*)bitmap;
|
|
|
|
while(bits_remaining)
|
|
{
|
|
u32 bits_to_read = (bits_remaining < 32 ? bits_remaining : 32);
|
|
u32 val = *buffer_pos;
|
|
|
|
for(u32 i = 0; i < bits_to_read; i++)
|
|
{
|
|
if (val & 0x80000000)
|
|
{
|
|
save_bitmap_set_bit(ctx->bitmap.bitmap, bitmap_pos);
|
|
} else {
|
|
save_bitmap_clear_bit(ctx->bitmap.bitmap, bitmap_pos);
|
|
}
|
|
|
|
bitmap_pos++;
|
|
bits_remaining--;
|
|
val <<= 1;
|
|
}
|
|
|
|
buffer_pos++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static u32 save_duplex_storage_read(duplex_storage_ctx_t *ctx, void *buffer, u64 offset, size_t count)
|
|
{
|
|
if (!ctx || !ctx->block_size || !ctx->bitmap.bitmap || !buffer || !count)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return 0;
|
|
}
|
|
|
|
u64 in_pos = offset;
|
|
u32 out_pos = 0;
|
|
u32 remaining = count;
|
|
|
|
while(remaining)
|
|
{
|
|
u32 block_num = (u32)(in_pos / ctx->block_size);
|
|
u32 block_pos = (u32)(in_pos % ctx->block_size);
|
|
u32 bytes_to_read = ((ctx->block_size - block_pos) < remaining ? (ctx->block_size - block_pos) : remaining);
|
|
|
|
u8 *data = (save_bitmap_check_bit(ctx->bitmap.bitmap, block_num) ? ctx->data_b : ctx->data_a);
|
|
memcpy((u8*)buffer + out_pos, data + in_pos, bytes_to_read);
|
|
|
|
out_pos += bytes_to_read;
|
|
in_pos += bytes_to_read;
|
|
remaining -= bytes_to_read;
|
|
}
|
|
|
|
return out_pos;
|
|
}
|
|
|
|
static remap_segment_ctx_t *save_remap_init_segments(remap_header_t *header, remap_entry_ctx_t *map_entries, u32 num_map_entries)
|
|
{
|
|
if (!header || !header->map_segment_count || !map_entries || !num_map_entries)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return NULL;
|
|
}
|
|
|
|
remap_segment_ctx_t *segments = calloc(header->map_segment_count, sizeof(remap_segment_ctx_t));
|
|
if (!segments)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate initial memory for remap segments!");
|
|
return NULL;
|
|
}
|
|
|
|
u32 i, entry_idx = 0;
|
|
bool success = false;
|
|
|
|
for(i = 0; i < header->map_segment_count; i++)
|
|
{
|
|
remap_segment_ctx_t *seg = &(segments[i]);
|
|
|
|
seg->entry_count = 0;
|
|
|
|
seg->entries = calloc(1, sizeof(remap_entry_ctx_t*));
|
|
if (!seg->entries)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for remap segment entry #%u!", entry_idx);
|
|
goto end;
|
|
}
|
|
|
|
seg->entries[seg->entry_count++] = &map_entries[entry_idx];
|
|
seg->offset = map_entries[entry_idx].virtual_offset;
|
|
map_entries[entry_idx++].segment = seg;
|
|
|
|
while(entry_idx < num_map_entries && map_entries[entry_idx - 1].virtual_offset_end == map_entries[entry_idx].virtual_offset)
|
|
{
|
|
map_entries[entry_idx].segment = seg;
|
|
map_entries[entry_idx - 1].next = &map_entries[entry_idx];
|
|
|
|
remap_entry_ctx_t **ptr = calloc(sizeof(remap_entry_ctx_t*), seg->entry_count + 1);
|
|
if (!ptr)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for remap segment entry #%u!", entry_idx);
|
|
goto end;
|
|
}
|
|
|
|
memcpy(ptr, seg->entries, sizeof(remap_entry_ctx_t*) * seg->entry_count);
|
|
free(seg->entries);
|
|
seg->entries = ptr;
|
|
seg->entries[seg->entry_count++] = &map_entries[entry_idx++];
|
|
}
|
|
|
|
seg->length = (seg->entries[seg->entry_count - 1]->virtual_offset_end - seg->entries[0]->virtual_offset);
|
|
}
|
|
|
|
success = true;
|
|
|
|
end:
|
|
if (!success)
|
|
{
|
|
entry_idx = 0;
|
|
|
|
for(u32 j = 0; j <= i; j++)
|
|
{
|
|
if (!map_entries[entry_idx].segment) break;
|
|
|
|
if (map_entries[entry_idx].segment->entries)
|
|
{
|
|
free(map_entries[entry_idx].segment->entries);
|
|
map_entries[entry_idx].segment->entries = NULL;
|
|
}
|
|
|
|
map_entries[entry_idx++].segment = NULL;
|
|
|
|
while(entry_idx < num_map_entries && map_entries[entry_idx - 1].virtual_offset_end == map_entries[entry_idx].virtual_offset)
|
|
{
|
|
map_entries[entry_idx - 1].next = NULL;
|
|
|
|
if (!map_entries[entry_idx].segment) break;
|
|
|
|
if (map_entries[entry_idx].segment->entries)
|
|
{
|
|
free(map_entries[entry_idx].segment->entries);
|
|
map_entries[entry_idx].segment->entries = NULL;
|
|
}
|
|
|
|
map_entries[entry_idx++].segment = NULL;
|
|
}
|
|
}
|
|
|
|
free(segments);
|
|
segments = NULL;
|
|
}
|
|
|
|
return segments;
|
|
}
|
|
|
|
static remap_entry_ctx_t *save_remap_get_map_entry(remap_storage_ctx_t *ctx, u64 offset)
|
|
{
|
|
if (!ctx || !ctx->header || !ctx->segments)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return NULL;
|
|
}
|
|
|
|
u32 segment_idx = (u32)(offset >> (64 - ctx->header->segment_bits));
|
|
|
|
if (segment_idx < ctx->header->map_segment_count)
|
|
{
|
|
for(u32 i = 0; i < ctx->segments[segment_idx].entry_count; i++)
|
|
{
|
|
if (ctx->segments[segment_idx].entries[i]->virtual_offset_end > offset) return ctx->segments[segment_idx].entries[i];
|
|
}
|
|
}
|
|
|
|
LOG_MSG_ERROR("Unable to find map entry for offset 0x%lX!", offset);
|
|
return NULL;
|
|
}
|
|
|
|
static u64 save_remap_read(remap_storage_ctx_t *ctx, void *buffer, u64 offset, size_t count)
|
|
{
|
|
if (!ctx || (ctx->type == STORAGE_BYTES && !ctx->file) || (ctx->type == STORAGE_DUPLEX && !ctx->duplex) || (ctx->type != STORAGE_BYTES && ctx->type != STORAGE_DUPLEX) || !buffer || !count)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return 0;
|
|
}
|
|
|
|
remap_entry_ctx_t *entry = save_remap_get_map_entry(ctx, offset);
|
|
if (!entry)
|
|
{
|
|
LOG_MSG_ERROR("Failed to retrieve map entry!");
|
|
return 0;
|
|
}
|
|
|
|
u64 in_pos = offset;
|
|
u64 out_pos = 0;
|
|
u64 remaining = count;
|
|
|
|
int res = 0;
|
|
|
|
while(remaining)
|
|
{
|
|
u64 entry_pos = (in_pos - entry->virtual_offset);
|
|
u64 bytes_to_read = ((entry->virtual_offset_end - in_pos) < remaining ? (entry->virtual_offset_end - in_pos) : remaining);
|
|
u64 read_bytes = 0;
|
|
|
|
switch (ctx->type)
|
|
{
|
|
case STORAGE_BYTES:
|
|
res = fseek(ctx->file, ctx->base_storage_offset + entry->physical_offset + entry_pos, SEEK_SET);
|
|
if (res || ftell(ctx->file) != (ctx->base_storage_offset + entry->physical_offset + entry_pos))
|
|
{
|
|
LOG_MSG_ERROR("Failed to seek to offset 0x%lX in savefile! (%d).", ctx->base_storage_offset + entry->physical_offset + entry_pos, errno);
|
|
return out_pos;
|
|
}
|
|
|
|
read_bytes = fread((u8*)buffer + out_pos, 1, bytes_to_read, ctx->file);
|
|
if (read_bytes != bytes_to_read)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read 0x%lX-byte long chunk from offset 0x%lX in savefile! (read 0x%lX, errno %d).", bytes_to_read, ctx->base_storage_offset + entry->physical_offset + entry_pos, read_bytes, errno);
|
|
return (out_pos + read_bytes);
|
|
}
|
|
|
|
break;
|
|
case STORAGE_DUPLEX:
|
|
read_bytes = save_duplex_storage_read(ctx->duplex, (u8*)buffer + out_pos, ctx->base_storage_offset + entry->physical_offset + entry_pos, bytes_to_read);
|
|
if (read_bytes != bytes_to_read)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read remap data from duplex storage!");
|
|
return (out_pos + read_bytes);
|
|
}
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
out_pos += bytes_to_read;
|
|
in_pos += bytes_to_read;
|
|
remaining -= bytes_to_read;
|
|
|
|
if (in_pos >= entry->virtual_offset_end) entry = entry->next;
|
|
}
|
|
|
|
return out_pos;
|
|
}
|
|
|
|
static u64 save_journal_storage_read(journal_storage_ctx_t *ctx, remap_storage_ctx_t *remap, void *buffer, u64 offset, size_t count)
|
|
{
|
|
if (!ctx || !ctx->block_size || !remap || !buffer || !count)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return 0;
|
|
}
|
|
|
|
u64 in_pos = offset;
|
|
u64 out_pos = 0;
|
|
u64 remaining = count;
|
|
|
|
while(remaining)
|
|
{
|
|
u64 block_num = (in_pos / ctx->block_size);
|
|
u64 block_pos = (in_pos % ctx->block_size);
|
|
u64 physical_offset = (ctx->map.entries[block_num].physical_index * ctx->block_size + block_pos);
|
|
u64 bytes_to_read = ((ctx->block_size - block_pos) < remaining ? (ctx->block_size - block_pos) : remaining);
|
|
|
|
u64 read_bytes = save_remap_read(remap, (u8*)buffer + out_pos, ctx->journal_data_offset + physical_offset, bytes_to_read);
|
|
if (read_bytes != bytes_to_read)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read journal storage data!");
|
|
return (out_pos + read_bytes);
|
|
}
|
|
|
|
out_pos += bytes_to_read;
|
|
in_pos += bytes_to_read;
|
|
remaining -= bytes_to_read;
|
|
}
|
|
|
|
return out_pos;
|
|
}
|
|
|
|
static bool save_ivfc_storage_init(hierarchical_integrity_verification_storage_ctx_t *ctx, u64 master_hash_offset, ivfc_save_hdr_t *ivfc)
|
|
{
|
|
if (!ctx || !ivfc || !ivfc->num_levels)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
bool success = false;
|
|
|
|
ivfc_level_save_ctx_t *levels = ctx->levels;
|
|
levels[0].type = STORAGE_BYTES;
|
|
levels[0].hash_offset = master_hash_offset;
|
|
|
|
for(u32 i = 1; i < 4; i++)
|
|
{
|
|
ivfc_level_hdr_t *level = &ivfc->level_headers[i - 1];
|
|
levels[i].type = STORAGE_REMAP;
|
|
levels[i].data_offset = level->logical_offset;
|
|
levels[i].data_size = level->hash_data_size;
|
|
}
|
|
|
|
if (ivfc->num_levels == 5)
|
|
{
|
|
ivfc_level_hdr_t *data_level = &ivfc->level_headers[ivfc->num_levels - 2];
|
|
levels[ivfc->num_levels - 1].type = STORAGE_JOURNAL;
|
|
levels[ivfc->num_levels - 1].data_offset = data_level->logical_offset;
|
|
levels[ivfc->num_levels - 1].data_size = data_level->hash_data_size;
|
|
}
|
|
|
|
struct salt_source_t {
|
|
char string[50];
|
|
u32 length;
|
|
};
|
|
|
|
static const struct salt_source_t salt_sources[6] = {
|
|
{ "HierarchicalIntegrityVerificationStorage::Master", 48 },
|
|
{ "HierarchicalIntegrityVerificationStorage::L1", 44 },
|
|
{ "HierarchicalIntegrityVerificationStorage::L2", 44 },
|
|
{ "HierarchicalIntegrityVerificationStorage::L3", 44 },
|
|
{ "HierarchicalIntegrityVerificationStorage::L4", 44 },
|
|
{ "HierarchicalIntegrityVerificationStorage::L5", 44 }
|
|
};
|
|
|
|
integrity_verification_info_ctx_t init_info[ivfc->num_levels];
|
|
|
|
init_info[0].data = &levels[0];
|
|
init_info[0].block_size = 0;
|
|
|
|
for(u32 i = 1; i < ivfc->num_levels; i++)
|
|
{
|
|
init_info[i].data = &levels[i];
|
|
init_info[i].block_size = (1 << ivfc->level_headers[i - 1].block_size);
|
|
hmacSha256CalculateMac(init_info[i].salt, salt_sources[i - 1].string, salt_sources[i - 1].length, ivfc->salt_source, 0x20);
|
|
}
|
|
|
|
ctx->integrity_storages[0].next_level = NULL;
|
|
|
|
ctx->level_validities = calloc(sizeof(validity_t*), (ivfc->num_levels - 1));
|
|
if (!ctx->level_validities)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for level validities!");
|
|
goto end;
|
|
}
|
|
|
|
for(u32 i = 1; i < ivfc->num_levels; i++)
|
|
{
|
|
integrity_verification_storage_ctx_t *level_data = &ctx->integrity_storages[i - 1];
|
|
level_data->hash_storage = &levels[i - 1];
|
|
level_data->base_storage = &levels[i];
|
|
level_data->sector_size = init_info[i].block_size;
|
|
level_data->_length = init_info[i].data->data_size;
|
|
level_data->sector_count = ((level_data->_length + level_data->sector_size - 1) / level_data->sector_size);
|
|
memcpy(level_data->salt, init_info[i].salt, 0x20);
|
|
|
|
level_data->block_validities = calloc(sizeof(validity_t), level_data->sector_count);
|
|
if (!level_data->block_validities)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for block validities in IVFC level #%u!", i);
|
|
goto end;
|
|
}
|
|
|
|
ctx->level_validities[i - 1] = level_data->block_validities;
|
|
if (i > 1) level_data->next_level = &ctx->integrity_storages[i - 2];
|
|
}
|
|
|
|
ctx->data_level = &levels[ivfc->num_levels - 1];
|
|
ctx->_length = ctx->integrity_storages[ivfc->num_levels - 2]._length;
|
|
|
|
success = true;
|
|
|
|
end:
|
|
if (!success && ctx->level_validities)
|
|
{
|
|
free(ctx->level_validities);
|
|
ctx->level_validities = NULL;
|
|
|
|
for(u32 i = 1; i < ivfc->num_levels; i++)
|
|
{
|
|
integrity_verification_storage_ctx_t *level_data = &ctx->integrity_storages[i - 1];
|
|
|
|
if (level_data->block_validities)
|
|
{
|
|
free(level_data->block_validities);
|
|
level_data->block_validities = NULL;
|
|
ctx->level_validities[i - 1] = NULL;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
static size_t save_ivfc_level_fread(ivfc_level_save_ctx_t *ctx, void *buffer, u64 offset, size_t count)
|
|
{
|
|
if (!ctx || (ctx->type == STORAGE_BYTES && !ctx->save_ctx->file) || (ctx->type != STORAGE_BYTES && ctx->type != STORAGE_REMAP && ctx->type != STORAGE_JOURNAL) || !buffer || !count)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return 0;
|
|
}
|
|
|
|
size_t read_bytes = 0;
|
|
|
|
int res = 0;
|
|
|
|
switch (ctx->type)
|
|
{
|
|
case STORAGE_BYTES:
|
|
res = fseek(ctx->save_ctx->file, ctx->hash_offset + offset, SEEK_SET);
|
|
if (res || ftell(ctx->save_ctx->file) != (ctx->hash_offset + offset))
|
|
{
|
|
LOG_MSG_ERROR("Failed to seek to offset 0x%lX in savefile! (%d).", ctx->hash_offset + offset, errno);
|
|
return 0;
|
|
}
|
|
|
|
read_bytes = fread(buffer, 1, count, ctx->save_ctx->file);
|
|
if (read_bytes != count)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read 0x%lX-byte long IVFC level data chunk from offset 0x%lX in savefile! (read 0x%lX, errno %d).", count, ctx->hash_offset + offset, read_bytes, errno);
|
|
return read_bytes;
|
|
}
|
|
|
|
break;
|
|
case STORAGE_REMAP:
|
|
read_bytes = save_remap_read(&ctx->save_ctx->meta_remap_storage, buffer, ctx->data_offset + offset, count);
|
|
if (read_bytes != count)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read IVFC level data from remap storage!");
|
|
return read_bytes;
|
|
}
|
|
|
|
break;
|
|
case STORAGE_JOURNAL:
|
|
read_bytes = save_journal_storage_read(&ctx->save_ctx->journal_storage, &ctx->save_ctx->data_remap_storage, buffer, ctx->data_offset + offset, count);
|
|
if (read_bytes != count)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read IVFC level data from journal storage!");
|
|
return read_bytes;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static bool save_ivfc_storage_read(integrity_verification_storage_ctx_t *ctx, void *buffer, u64 offset, size_t count, u32 verify)
|
|
{
|
|
if (!ctx || !ctx->sector_size || (!ctx->next_level && !ctx->hash_storage && !ctx->base_storage) || !buffer || !count)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
if (count > ctx->sector_size)
|
|
{
|
|
LOG_MSG_ERROR("IVFC read exceeds sector size!");
|
|
return false;
|
|
}
|
|
|
|
u64 block_index = (offset / ctx->sector_size);
|
|
|
|
if (ctx->block_validities[block_index] == VALIDITY_INVALID && verify)
|
|
{
|
|
LOG_MSG_ERROR("Hash error from previous check found at offset 0x%lX, count 0x%lX!", offset, count);
|
|
return false;
|
|
}
|
|
|
|
u8 hash_buffer[0x20] = {0};
|
|
u8 zeroes[0x20] = {0};
|
|
u64 hash_pos = (block_index * 0x20);
|
|
|
|
if (ctx->next_level)
|
|
{
|
|
if (!save_ivfc_storage_read(ctx->next_level, hash_buffer, hash_pos, 0x20, verify))
|
|
{
|
|
LOG_MSG_ERROR("Failed to read hash from next IVFC level!");
|
|
return false;
|
|
}
|
|
} else {
|
|
if (save_ivfc_level_fread(ctx->hash_storage, hash_buffer, hash_pos, 0x20) != 0x20)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read hash from hash storage!");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!memcmp(hash_buffer, zeroes, 0x20))
|
|
{
|
|
memset(buffer, 0, count);
|
|
ctx->block_validities[block_index] = VALIDITY_VALID;
|
|
return true;
|
|
}
|
|
|
|
if (save_ivfc_level_fread(ctx->base_storage, buffer, offset, count) != count)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read IVFC level from base storage!");
|
|
return false;
|
|
}
|
|
|
|
if (!(verify && ctx->block_validities[block_index] == VALIDITY_UNCHECKED)) return true;
|
|
|
|
u8 hash[0x20] = {0};
|
|
|
|
u8 *data_buffer = calloc(1, ctx->sector_size + 0x20);
|
|
if (!data_buffer)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for data buffer!");
|
|
return false;
|
|
}
|
|
|
|
memcpy(data_buffer, ctx->salt, 0x20);
|
|
memcpy(data_buffer + 0x20, buffer, ctx->sector_size);
|
|
|
|
sha256CalculateHash(hash, data_buffer, ctx->sector_size + 0x20);
|
|
hash[0x1F] |= 0x80;
|
|
|
|
free(data_buffer);
|
|
|
|
ctx->block_validities[block_index] = (!memcmp(hash_buffer, hash, 0x20) ? VALIDITY_VALID : VALIDITY_INVALID);
|
|
|
|
if (ctx->block_validities[block_index] == VALIDITY_INVALID && verify)
|
|
{
|
|
LOG_MSG_ERROR("Hash error from current check found at offset 0x%lX, count 0x%lX!", offset, count);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static u32 save_allocation_table_read_entry_with_length(allocation_table_ctx_t *ctx, allocation_table_entry_t *entry)
|
|
{
|
|
if (!ctx || !ctx->base_storage || !entry)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return 0;
|
|
}
|
|
|
|
u32 length = 1;
|
|
u32 entry_index = allocation_table_block_to_entry_index(entry->next);
|
|
|
|
allocation_table_entry_t *entries = (allocation_table_entry_t*)((u8*)(ctx->base_storage) + (entry_index * SAVE_FAT_ENTRY_SIZE));
|
|
|
|
if ((entries[0].next & 0x80000000) == 0)
|
|
{
|
|
if ((entries[0].prev & 0x80000000) && entries[0].prev != 0x80000000)
|
|
{
|
|
LOG_MSG_ERROR("Invalid range entry in allocation table!");
|
|
return 0;
|
|
}
|
|
} else {
|
|
length = (entries[1].next - entry_index + 1);
|
|
}
|
|
|
|
if (allocation_table_is_list_end(&entries[0]))
|
|
{
|
|
entry->next = 0xFFFFFFFF;
|
|
} else {
|
|
entry->next = allocation_table_entry_index_to_block(allocation_table_get_next(&entries[0]));
|
|
}
|
|
|
|
if (allocation_table_is_list_start(&entries[0]))
|
|
{
|
|
entry->prev = 0xFFFFFFFF;
|
|
} else {
|
|
entry->prev = allocation_table_entry_index_to_block(allocation_table_get_prev(&entries[0]));
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
static u32 save_allocation_table_get_list_length(allocation_table_ctx_t *ctx, u32 block_index)
|
|
{
|
|
if (!ctx || !ctx->header->allocation_table_block_count)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return 0;
|
|
}
|
|
|
|
allocation_table_entry_t entry = {0};
|
|
entry.next = block_index;
|
|
u32 total_length = 0;
|
|
u32 table_size = ctx->header->allocation_table_block_count;
|
|
u32 nodes_iterated = 0;
|
|
|
|
while(entry.next != 0xFFFFFFFF)
|
|
{
|
|
u32 entry_length = save_allocation_table_read_entry_with_length(ctx, &entry);
|
|
if (!entry_length)
|
|
{
|
|
LOG_MSG_ERROR("Failed to retrieve FAT entry length!");
|
|
return 0;
|
|
}
|
|
|
|
total_length += entry_length;
|
|
nodes_iterated++;
|
|
|
|
if (nodes_iterated > table_size)
|
|
{
|
|
LOG_MSG_ERROR("Cycle detected in allocation table!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return total_length;
|
|
}
|
|
|
|
static bool save_allocation_table_iterator_begin(allocation_table_iterator_ctx_t *ctx, allocation_table_ctx_t *table, u32 initial_block)
|
|
{
|
|
if (!ctx || !table)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
ctx->fat = table;
|
|
ctx->physical_block = initial_block;
|
|
ctx->virtual_block = 0;
|
|
|
|
allocation_table_entry_t entry = {0};
|
|
entry.next = initial_block;
|
|
|
|
ctx->current_segment_size = save_allocation_table_read_entry_with_length(ctx->fat, &entry);
|
|
if (!ctx->current_segment_size)
|
|
{
|
|
LOG_MSG_ERROR("Failed to retrieve FAT entry length!");
|
|
return false;
|
|
}
|
|
|
|
ctx->next_block = entry.next;
|
|
ctx->prev_block = entry.prev;
|
|
|
|
if (ctx->prev_block != 0xFFFFFFFF)
|
|
{
|
|
LOG_MSG_ERROR("Attempted to start FAT iteration from invalid block 0x%X!", initial_block);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool save_allocation_table_iterator_move_next(allocation_table_iterator_ctx_t *ctx)
|
|
{
|
|
if (!ctx || ctx->next_block == 0xFFFFFFFF)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
ctx->virtual_block += ctx->current_segment_size;
|
|
ctx->physical_block = ctx->next_block;
|
|
|
|
allocation_table_entry_t entry = {0};
|
|
entry.next = ctx->next_block;
|
|
|
|
ctx->current_segment_size = save_allocation_table_read_entry_with_length(ctx->fat, &entry);
|
|
if (!ctx->current_segment_size)
|
|
{
|
|
LOG_MSG_ERROR("Failed to retrieve current segment size!");
|
|
return false;
|
|
}
|
|
|
|
ctx->next_block = entry.next;
|
|
ctx->prev_block = entry.prev;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool save_allocation_table_iterator_move_prev(allocation_table_iterator_ctx_t *ctx)
|
|
{
|
|
if (!ctx || ctx->prev_block == 0xFFFFFFFF)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
ctx->physical_block = ctx->prev_block;
|
|
|
|
allocation_table_entry_t entry = {0};
|
|
entry.next = ctx->prev_block;
|
|
|
|
ctx->current_segment_size = save_allocation_table_read_entry_with_length(ctx->fat, &entry);
|
|
if (!ctx->current_segment_size)
|
|
{
|
|
LOG_MSG_ERROR("Failed to retrieve current segment size!");
|
|
return false;
|
|
}
|
|
|
|
ctx->next_block = entry.next;
|
|
ctx->prev_block = entry.prev;
|
|
|
|
ctx->virtual_block -= ctx->current_segment_size;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool save_allocation_table_iterator_seek(allocation_table_iterator_ctx_t *ctx, u32 block)
|
|
{
|
|
while(true)
|
|
{
|
|
if (block < ctx->virtual_block)
|
|
{
|
|
if (!save_allocation_table_iterator_move_prev(ctx)) return false;
|
|
} else
|
|
if (block >= ctx->virtual_block + ctx->current_segment_size)
|
|
{
|
|
if (!save_allocation_table_iterator_move_next(ctx)) return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
u32 save_allocation_table_storage_read(allocation_table_storage_ctx_t *ctx, void *buffer, u64 offset, size_t count)
|
|
{
|
|
if (!ctx || !ctx->fat || !ctx->block_size || !buffer || !count)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return 0;
|
|
}
|
|
|
|
allocation_table_iterator_ctx_t iterator;
|
|
if (!save_allocation_table_iterator_begin(&iterator, ctx->fat, ctx->initial_block))
|
|
{
|
|
LOG_MSG_ERROR("Failed to initialize FAT interator!");
|
|
return 0;
|
|
}
|
|
|
|
u64 in_pos = offset;
|
|
u32 out_pos = 0;
|
|
u32 remaining = count;
|
|
|
|
while(remaining)
|
|
{
|
|
u32 block_num = (u32)(in_pos / ctx->block_size);
|
|
if (!save_allocation_table_iterator_seek(&iterator, block_num))
|
|
{
|
|
LOG_MSG_ERROR("Failed to seek to block #%u within offset 0x%lX!", block_num, offset);
|
|
return out_pos;
|
|
}
|
|
|
|
u32 segment_pos = (u32)(in_pos - ((u64)iterator.virtual_block * ctx->block_size));
|
|
u64 physical_offset = ((iterator.physical_block * ctx->block_size) + segment_pos);
|
|
|
|
u32 remaining_in_segment = ((iterator.current_segment_size * ctx->block_size) - segment_pos);
|
|
u32 bytes_to_read = (remaining < remaining_in_segment ? remaining : remaining_in_segment);
|
|
|
|
u32 sector_size = ctx->base_storage->integrity_storages[3].sector_size;
|
|
u32 chunk_remaining = bytes_to_read;
|
|
|
|
for(u32 i = 0; i < bytes_to_read; i += sector_size)
|
|
{
|
|
u32 bytes_to_request = (chunk_remaining < sector_size ? chunk_remaining : sector_size);
|
|
|
|
if (!save_ivfc_storage_read(&ctx->base_storage->integrity_storages[3], (u8*)buffer + out_pos + i, physical_offset + i, bytes_to_request, \
|
|
ctx->base_storage->data_level->save_ctx->tool_ctx.action & ACTION_VERIFY))
|
|
{
|
|
LOG_MSG_ERROR("Failed to read %u bytes chunk from IVFC storage at physical offset 0x%lX!", bytes_to_request, physical_offset + i);
|
|
return (out_pos + bytes_to_read - chunk_remaining);
|
|
}
|
|
|
|
chunk_remaining -= bytes_to_request;
|
|
}
|
|
|
|
out_pos += bytes_to_read;
|
|
in_pos += bytes_to_read;
|
|
remaining -= bytes_to_read;
|
|
}
|
|
|
|
return out_pos;
|
|
}
|
|
|
|
static u32 save_fs_list_get_capacity(save_filesystem_list_ctx_t *ctx)
|
|
{
|
|
if (!ctx)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return 0;
|
|
}
|
|
|
|
if (!ctx->capacity)
|
|
{
|
|
if (save_allocation_table_storage_read(&ctx->storage, &ctx->capacity, 4, 4) != 4)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read FS capacity from FAT storage!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return ctx->capacity;
|
|
}
|
|
|
|
static u32 save_fs_list_read_entry(save_filesystem_list_ctx_t *ctx, u32 index, save_fs_list_entry_t *entry)
|
|
{
|
|
if (!ctx || !entry)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return 0;
|
|
}
|
|
|
|
u32 ret = save_allocation_table_storage_read(&ctx->storage, entry, index * SAVE_FS_LIST_ENTRY_SIZE, SAVE_FS_LIST_ENTRY_SIZE);
|
|
if (ret != SAVE_FS_LIST_ENTRY_SIZE)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read FS entry from FAT storage!");
|
|
return 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool save_fs_list_get_value(save_filesystem_list_ctx_t *ctx, u32 index, save_fs_list_entry_t *value)
|
|
{
|
|
if (!ctx || !value)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
u32 capacity = save_fs_list_get_capacity(ctx);
|
|
if (!capacity)
|
|
{
|
|
LOG_MSG_ERROR("Failed to retrieve FS capacity!");
|
|
return false;
|
|
}
|
|
|
|
if (index >= capacity)
|
|
{
|
|
LOG_MSG_ERROR("Provided index exceeds FS capacity!");
|
|
return false;
|
|
}
|
|
|
|
if (!save_fs_list_read_entry(ctx, index, value))
|
|
{
|
|
LOG_MSG_ERROR("Failed to read FS entry!");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
u32 save_fs_list_get_index_from_key(save_filesystem_list_ctx_t *ctx, save_entry_key_t *key, u32 *prev_index)
|
|
{
|
|
u32 prev;
|
|
if (!prev_index) prev_index = &prev;
|
|
|
|
if (!ctx || !key)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
goto end;
|
|
}
|
|
|
|
u32 capacity = save_fs_list_get_capacity(ctx);
|
|
if (!capacity)
|
|
{
|
|
LOG_MSG_ERROR("Failed to retrieve FS capacity!");
|
|
goto end;
|
|
}
|
|
|
|
save_fs_list_entry_t entry;
|
|
if (!save_fs_list_read_entry(ctx, ctx->used_list_head_index, &entry))
|
|
{
|
|
LOG_MSG_ERROR("Failed to read FS entry for initial index %u!", ctx->used_list_head_index);
|
|
goto end;
|
|
}
|
|
|
|
*prev_index = ctx->used_list_head_index;
|
|
u32 index = entry.next;
|
|
|
|
while(index)
|
|
{
|
|
if (index > capacity)
|
|
{
|
|
LOG_MSG_ERROR("Save entry index %d out of range!", index);
|
|
break;
|
|
}
|
|
|
|
if (!save_fs_list_read_entry(ctx, index, &entry))
|
|
{
|
|
LOG_MSG_ERROR("Failed to read FS entry for index %u!", index);
|
|
break;
|
|
}
|
|
|
|
if (entry.parent == key->parent && !strcmp(entry.name, key->name)) return index;
|
|
|
|
*prev_index = index;
|
|
index = entry.next;
|
|
}
|
|
|
|
if (!index) LOG_MSG_ERROR("Unable to find FS index from key!");
|
|
|
|
end:
|
|
*prev_index = 0xFFFFFFFF;
|
|
return 0xFFFFFFFF;
|
|
}
|
|
|
|
bool save_hierarchical_file_table_find_path_recursive(hierarchical_save_file_table_ctx_t *ctx, save_entry_key_t *key, const char *path)
|
|
{
|
|
if (!ctx || !key || !path || !*path)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
key->parent = 0;
|
|
const char *pos = strchr(path, '/');
|
|
|
|
while(pos)
|
|
{
|
|
memset(key->name, 0, SAVE_FS_LIST_MAX_NAME_LENGTH);
|
|
|
|
const char *tmp = strchr(pos, '/');
|
|
if (!tmp)
|
|
{
|
|
memcpy(key->name, pos, strlen(pos));
|
|
break;
|
|
}
|
|
|
|
memcpy(key->name, pos, tmp - pos);
|
|
|
|
key->parent = save_fs_list_get_index_from_key(&ctx->directory_table, key, NULL);
|
|
if (key->parent == 0xFFFFFFFF) return false;
|
|
|
|
pos = (tmp + 1);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool save_hierarchical_file_table_get_file_entry_by_path(hierarchical_save_file_table_ctx_t *ctx, const char *path, save_fs_list_entry_t *entry)
|
|
{
|
|
if (!ctx || !path || !*path || !entry)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
save_entry_key_t key;
|
|
if (!save_hierarchical_file_table_find_path_recursive(ctx, &key, path))
|
|
{
|
|
LOG_MSG_ERROR("Unable to locate file \"%s\"!", path);
|
|
return false;
|
|
}
|
|
|
|
u32 index = save_fs_list_get_index_from_key(&ctx->file_table, &key, NULL);
|
|
if (index == 0xFFFFFFFF)
|
|
{
|
|
LOG_MSG_ERROR("Unable to get table index for file \"%s\"!", path);
|
|
return false;
|
|
}
|
|
|
|
if (!save_fs_list_get_value(&ctx->file_table, index, entry))
|
|
{
|
|
LOG_MSG_ERROR("Unable to get file entry for \"%s\" from index!", path);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool save_open_fat_storage(save_filesystem_ctx_t *ctx, allocation_table_storage_ctx_t *storage_ctx, u32 block_index)
|
|
{
|
|
if (!ctx || !ctx->base_storage || !storage_ctx)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
storage_ctx->base_storage = ctx->base_storage;
|
|
storage_ctx->fat = &ctx->allocation_table;
|
|
storage_ctx->block_size = (u32)ctx->header->block_size;
|
|
storage_ctx->initial_block = block_index;
|
|
|
|
if (block_index == 0xFFFFFFFF)
|
|
{
|
|
storage_ctx->_length = 0;
|
|
} else {
|
|
u32 fat_list_length = save_allocation_table_get_list_length(storage_ctx->fat, block_index);
|
|
if (!fat_list_length)
|
|
{
|
|
LOG_MSG_ERROR("Failed to retrieve FAT list length!");
|
|
return false;
|
|
}
|
|
|
|
storage_ctx->_length = (fat_list_length * storage_ctx->block_size);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool save_filesystem_init(save_filesystem_ctx_t *ctx, void *fat, save_fs_header_t *save_fs_header, fat_header_t *fat_header)
|
|
{
|
|
if (!ctx || !fat || !save_fs_header || !fat_header)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
ctx->allocation_table.base_storage = fat;
|
|
ctx->allocation_table.header = fat_header;
|
|
ctx->allocation_table.free_list_entry_index = 0;
|
|
ctx->header = save_fs_header;
|
|
|
|
if (!save_open_fat_storage(ctx, &ctx->file_table.directory_table.storage, fat_header->directory_table_block))
|
|
{
|
|
LOG_MSG_ERROR("Failed to open FAT directory storage!");
|
|
return false;
|
|
}
|
|
|
|
if (!save_open_fat_storage(ctx, &ctx->file_table.file_table.storage, fat_header->file_table_block))
|
|
{
|
|
LOG_MSG_ERROR("Failed to open FAT file storage!");
|
|
return false;
|
|
}
|
|
|
|
ctx->file_table.file_table.free_list_head_index = 0;
|
|
ctx->file_table.file_table.used_list_head_index = 1;
|
|
ctx->file_table.directory_table.free_list_head_index = 0;
|
|
ctx->file_table.directory_table.used_list_head_index = 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
static validity_t save_ivfc_validate(hierarchical_integrity_verification_storage_ctx_t *ctx, ivfc_save_hdr_t *ivfc)
|
|
{
|
|
if (!ctx || !ivfc || !ivfc->num_levels)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return VALIDITY_INVALID;
|
|
}
|
|
|
|
validity_t result = VALIDITY_VALID;
|
|
|
|
for(u32 i = 0; i < (ivfc->num_levels - 1) && result != VALIDITY_INVALID; i++)
|
|
{
|
|
integrity_verification_storage_ctx_t *storage = &ctx->integrity_storages[i];
|
|
|
|
u64 block_size = storage->sector_size;
|
|
u32 block_count = (u32)((storage->_length + block_size - 1) / block_size);
|
|
|
|
u8 *buffer = calloc(1, block_size);
|
|
if (!buffer)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for input buffer!");
|
|
result = VALIDITY_INVALID;
|
|
break;
|
|
}
|
|
|
|
for(u32 j = 0; j < block_count; j++)
|
|
{
|
|
if (ctx->level_validities[ivfc->num_levels - 2][j] == VALIDITY_UNCHECKED)
|
|
{
|
|
u32 to_read = ((storage->_length - (block_size * j)) < block_size ? (storage->_length - (block_size * j)) : block_size);
|
|
if (!save_ivfc_storage_read(storage, buffer, block_size * j, to_read, 1))
|
|
{
|
|
LOG_MSG_ERROR("Failed to read IVFC storage data!");
|
|
result = VALIDITY_INVALID;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ctx->level_validities[ivfc->num_levels - 2][j] == VALIDITY_INVALID)
|
|
{
|
|
result = VALIDITY_INVALID;
|
|
break;
|
|
}
|
|
}
|
|
|
|
free(buffer);
|
|
|
|
if (result == VALIDITY_INVALID) break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool save_ivfc_set_level_validities(hierarchical_integrity_verification_storage_ctx_t *ctx, ivfc_save_hdr_t *ivfc)
|
|
{
|
|
if (!ctx || !ivfc || !ivfc->num_levels)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
bool success = true;
|
|
|
|
for(u32 i = 0; i < (ivfc->num_levels - 1); i++)
|
|
{
|
|
validity_t level_validity = VALIDITY_VALID;
|
|
|
|
for(u32 j = 0; j < ctx->integrity_storages[i].sector_count; j++)
|
|
{
|
|
if (ctx->level_validities[i][j] == VALIDITY_INVALID)
|
|
{
|
|
level_validity = VALIDITY_INVALID;
|
|
break;
|
|
}
|
|
|
|
if (ctx->level_validities[i][j] == VALIDITY_UNCHECKED && level_validity != VALIDITY_INVALID) level_validity = VALIDITY_UNCHECKED;
|
|
}
|
|
|
|
ctx->levels[i].hash_validity = level_validity;
|
|
|
|
if (success && level_validity == VALIDITY_INVALID) success = false;
|
|
}
|
|
|
|
if (!success) LOG_MSG_ERROR("Invalid IVFC level!");
|
|
|
|
return success;
|
|
}
|
|
|
|
static validity_t save_filesystem_verify(save_ctx_t *ctx)
|
|
{
|
|
if (!ctx)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return VALIDITY_INVALID;
|
|
}
|
|
|
|
validity_t journal_validity = save_ivfc_validate(&ctx->core_data_ivfc_storage, &ctx->header.data_ivfc_header);
|
|
if (journal_validity == VALIDITY_INVALID)
|
|
{
|
|
LOG_MSG_ERROR("Invalid core IVFC storage!");
|
|
return journal_validity;
|
|
}
|
|
|
|
if (!save_ivfc_set_level_validities(&ctx->core_data_ivfc_storage, &ctx->header.data_ivfc_header))
|
|
{
|
|
LOG_MSG_ERROR("Invalid IVFC level in core IVFC storage!");
|
|
journal_validity = VALIDITY_INVALID;
|
|
return journal_validity;
|
|
}
|
|
|
|
if (!ctx->fat_ivfc_storage.levels[0].save_ctx) return journal_validity;
|
|
|
|
validity_t fat_validity = save_ivfc_validate(&ctx->fat_ivfc_storage, &ctx->header.fat_ivfc_header);
|
|
if (fat_validity == VALIDITY_INVALID)
|
|
{
|
|
LOG_MSG_ERROR("Invalid FAT IVFC storage!");
|
|
return fat_validity;
|
|
}
|
|
|
|
if (!save_ivfc_set_level_validities(&ctx->fat_ivfc_storage, &ctx->header.fat_ivfc_header))
|
|
{
|
|
LOG_MSG_ERROR("Invalid IVFC level in FAT IVFC storage!");
|
|
fat_validity = VALIDITY_INVALID;
|
|
return fat_validity;
|
|
}
|
|
|
|
if (journal_validity != VALIDITY_VALID) return journal_validity;
|
|
if (fat_validity != VALIDITY_VALID) return fat_validity;
|
|
|
|
return journal_validity;
|
|
}
|
|
|
|
bool save_process(save_ctx_t *ctx)
|
|
{
|
|
if (!ctx || !ctx->file)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
size_t read_bytes = 0;
|
|
int res = 0;
|
|
bool success = false;
|
|
|
|
/* Try to parse Header A. */
|
|
rewind(ctx->file);
|
|
|
|
read_bytes = fread(&(ctx->header), 1, sizeof(ctx->header), ctx->file);
|
|
if (read_bytes != sizeof(ctx->header))
|
|
{
|
|
LOG_MSG_ERROR("Failed to read savefile header A! (read 0x%lX, errno %d).", read_bytes, errno);
|
|
return success;
|
|
}
|
|
|
|
if (!save_process_header(ctx) || ctx->header_hash_validity == VALIDITY_INVALID)
|
|
{
|
|
/* Try to parse Header B. */
|
|
res = fseek(ctx->file, 0x4000, SEEK_SET);
|
|
if (res || ftell(ctx->file) != 0x4000)
|
|
{
|
|
LOG_MSG_ERROR("Failed to seek to offset 0x4000 in savefile! (%d).", errno);
|
|
return success;
|
|
}
|
|
|
|
read_bytes = fread(&(ctx->header), 1, sizeof(ctx->header), ctx->file);
|
|
if (read_bytes != sizeof(ctx->header))
|
|
{
|
|
LOG_MSG_ERROR("Failed to read savefile header B! (read 0x%lX, errno %d).", read_bytes, errno);
|
|
return success;
|
|
}
|
|
|
|
if (!save_process_header(ctx) || ctx->header_hash_validity == VALIDITY_INVALID)
|
|
{
|
|
LOG_MSG_ERROR("Savefile header is invalid!");
|
|
return success;
|
|
}
|
|
}
|
|
|
|
u8 cmac[0x10] = {0};
|
|
cmacAes128CalculateMac(cmac, ctx->save_mac_key, &ctx->header.layout, sizeof(ctx->header.layout));
|
|
|
|
ctx->header_cmac_validity = (!memcmp(cmac, &ctx->header.cmac, 0x10) ? VALIDITY_VALID : VALIDITY_INVALID);
|
|
|
|
/* Initialize remap storages. */
|
|
ctx->data_remap_storage.type = STORAGE_BYTES;
|
|
ctx->data_remap_storage.base_storage_offset = ctx->header.layout.file_map_data_offset;
|
|
ctx->data_remap_storage.header = &ctx->header.main_remap_header;
|
|
ctx->data_remap_storage.file = ctx->file;
|
|
|
|
ctx->data_remap_storage.map_entries = calloc(sizeof(remap_entry_ctx_t), ctx->data_remap_storage.header->map_entry_count);
|
|
if (!ctx->data_remap_storage.map_entries)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for data remap storage entries!");
|
|
return success;
|
|
}
|
|
|
|
res = fseek(ctx->file, ctx->header.layout.file_map_entry_offset, SEEK_SET);
|
|
if (res || ftell(ctx->file) != ctx->header.layout.file_map_entry_offset)
|
|
{
|
|
LOG_MSG_ERROR("Failed to seek to file map entry offset 0x%lX in savefile! (%d).", ctx->header.layout.file_map_entry_offset, errno);
|
|
return success;
|
|
}
|
|
|
|
for(u32 i = 0; i < ctx->data_remap_storage.header->map_entry_count; i++)
|
|
{
|
|
read_bytes = fread(&(ctx->data_remap_storage.map_entries[i]), 1, 0x20, ctx->file);
|
|
if (read_bytes != 0x20)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read data remap storage entry #%u! (read 0x%lX, errno %d).", i, read_bytes, errno);
|
|
goto end;
|
|
}
|
|
|
|
ctx->data_remap_storage.map_entries[i].physical_offset_end = (ctx->data_remap_storage.map_entries[i].physical_offset + ctx->data_remap_storage.map_entries[i].size);
|
|
ctx->data_remap_storage.map_entries[i].virtual_offset_end = (ctx->data_remap_storage.map_entries[i].virtual_offset + ctx->data_remap_storage.map_entries[i].size);
|
|
}
|
|
|
|
/* Initialize data remap storage. */
|
|
ctx->data_remap_storage.segments = save_remap_init_segments(ctx->data_remap_storage.header, ctx->data_remap_storage.map_entries, ctx->data_remap_storage.header->map_entry_count);
|
|
if (!ctx->data_remap_storage.segments)
|
|
{
|
|
LOG_MSG_ERROR("Failed to retrieve data remap storage segments!");
|
|
goto end;
|
|
}
|
|
|
|
/* Initialize duplex storage. */
|
|
ctx->duplex_layers[0].data_a = ((u8*)&ctx->header + ctx->header.layout.duplex_master_offset_a);
|
|
ctx->duplex_layers[0].data_b = ((u8*)&ctx->header + ctx->header.layout.duplex_master_offset_b);
|
|
memcpy(&ctx->duplex_layers[0].info, &ctx->header.duplex_header.layers[0], sizeof(duplex_info_t));
|
|
|
|
ctx->duplex_layers[1].data_a = calloc(1, ctx->header.layout.duplex_l1_size);
|
|
if (!ctx->duplex_layers[1].data_a)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for data_a block in duplex layer #1!");
|
|
goto end;
|
|
}
|
|
|
|
if (save_remap_read(&ctx->data_remap_storage, ctx->duplex_layers[1].data_a, ctx->header.layout.duplex_l1_offset_a, ctx->header.layout.duplex_l1_size) != ctx->header.layout.duplex_l1_size)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read data_a block from duplex layer #1 in data remap storage!");
|
|
goto end;
|
|
}
|
|
|
|
ctx->duplex_layers[1].data_b = calloc(1, ctx->header.layout.duplex_l1_size);
|
|
if (!ctx->duplex_layers[1].data_b)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for data_b block in duplex layer #1!");
|
|
goto end;
|
|
}
|
|
|
|
if (save_remap_read(&ctx->data_remap_storage, ctx->duplex_layers[1].data_b, ctx->header.layout.duplex_l1_offset_b, ctx->header.layout.duplex_l1_size) != ctx->header.layout.duplex_l1_size)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read data_b block from duplex layer #1 in data remap storage!");
|
|
goto end;
|
|
}
|
|
|
|
memcpy(&ctx->duplex_layers[1].info, &ctx->header.duplex_header.layers[1], sizeof(duplex_info_t));
|
|
|
|
ctx->duplex_layers[2].data_a = calloc(1, ctx->header.layout.duplex_data_size);
|
|
if (!ctx->duplex_layers[2].data_a)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for data_a block in duplex layer #2!");
|
|
goto end;
|
|
}
|
|
|
|
if (save_remap_read(&ctx->data_remap_storage, ctx->duplex_layers[2].data_a, ctx->header.layout.duplex_data_offset_a, ctx->header.layout.duplex_data_size) != ctx->header.layout.duplex_data_size)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read data_a block from duplex layer #2 in data remap storage!");
|
|
goto end;
|
|
}
|
|
|
|
ctx->duplex_layers[2].data_b = calloc(1, ctx->header.layout.duplex_data_size);
|
|
if (!ctx->duplex_layers[2].data_b)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for data_b block in duplex layer #2!");
|
|
goto end;
|
|
}
|
|
|
|
if (save_remap_read(&ctx->data_remap_storage, ctx->duplex_layers[2].data_b, ctx->header.layout.duplex_data_offset_b, ctx->header.layout.duplex_data_size) != ctx->header.layout.duplex_data_size)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read data_b block from duplex layer #2 in data remap storage!");
|
|
goto end;
|
|
}
|
|
|
|
memcpy(&ctx->duplex_layers[2].info, &ctx->header.duplex_header.layers[2], sizeof(duplex_info_t));
|
|
|
|
/* Initialize hierarchical duplex storage. */
|
|
u8 *bitmap = (ctx->header.layout.duplex_index == 1 ? ctx->duplex_layers[0].data_b : ctx->duplex_layers[0].data_a);
|
|
|
|
if (!save_duplex_storage_init(&ctx->duplex_storage.layers[0], &ctx->duplex_layers[1], bitmap, ctx->header.layout.duplex_master_size))
|
|
{
|
|
LOG_MSG_ERROR("Failed to initialize duplex storage layer #0!");
|
|
goto end;
|
|
}
|
|
|
|
ctx->duplex_storage.layers[0]._length = ctx->header.layout.duplex_l1_size;
|
|
|
|
bitmap = calloc(1, ctx->duplex_storage.layers[0]._length);
|
|
if (!bitmap)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for duplex storage layer #0 bitmap!");
|
|
goto end;
|
|
}
|
|
|
|
if (save_duplex_storage_read(&ctx->duplex_storage.layers[0], bitmap, 0, ctx->duplex_storage.layers[0]._length) != ctx->duplex_storage.layers[0]._length)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read duplex storage layer #0 bitmap!");
|
|
free(bitmap);
|
|
goto end;
|
|
}
|
|
|
|
if (!save_duplex_storage_init(&ctx->duplex_storage.layers[1], &ctx->duplex_layers[2], bitmap, ctx->duplex_storage.layers[0]._length))
|
|
{
|
|
LOG_MSG_ERROR("Failed to initialize duplex storage layer #1!");
|
|
goto end;
|
|
}
|
|
|
|
ctx->duplex_storage.layers[1]._length = ctx->header.layout.duplex_data_size;
|
|
|
|
ctx->duplex_storage.data_layer = ctx->duplex_storage.layers[1];
|
|
|
|
/* Initialize meta remap storage. */
|
|
ctx->meta_remap_storage.type = STORAGE_DUPLEX;
|
|
ctx->meta_remap_storage.duplex = &ctx->duplex_storage.data_layer;
|
|
ctx->meta_remap_storage.header = &ctx->header.meta_remap_header;
|
|
ctx->meta_remap_storage.file = ctx->file;
|
|
|
|
ctx->meta_remap_storage.map_entries = calloc(sizeof(remap_entry_ctx_t), ctx->meta_remap_storage.header->map_entry_count);
|
|
if (!ctx->meta_remap_storage.map_entries)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for meta remap storage entries!");
|
|
goto end;
|
|
}
|
|
|
|
res = fseek(ctx->file, ctx->header.layout.meta_map_entry_offset, SEEK_SET);
|
|
if (res || ftell(ctx->file) != ctx->header.layout.meta_map_entry_offset)
|
|
{
|
|
LOG_MSG_ERROR("Failed to seek to meta map entry offset 0x%lX in savefile! (%d).", ctx->header.layout.meta_map_entry_offset, errno);
|
|
goto end;
|
|
}
|
|
|
|
for(u32 i = 0; i < ctx->meta_remap_storage.header->map_entry_count; i++)
|
|
{
|
|
read_bytes = fread(&(ctx->meta_remap_storage.map_entries[i]), 1, 0x20, ctx->file);
|
|
if (read_bytes != 0x20)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read meta remap storage entry #%u! (read 0x%lX, errno %d).", i, read_bytes, errno);
|
|
goto end;
|
|
}
|
|
|
|
ctx->meta_remap_storage.map_entries[i].physical_offset_end = (ctx->meta_remap_storage.map_entries[i].physical_offset + ctx->meta_remap_storage.map_entries[i].size);
|
|
ctx->meta_remap_storage.map_entries[i].virtual_offset_end = (ctx->meta_remap_storage.map_entries[i].virtual_offset + ctx->meta_remap_storage.map_entries[i].size);
|
|
}
|
|
|
|
ctx->meta_remap_storage.segments = save_remap_init_segments(ctx->meta_remap_storage.header, ctx->meta_remap_storage.map_entries, ctx->meta_remap_storage.header->map_entry_count);
|
|
if (!ctx->meta_remap_storage.segments)
|
|
{
|
|
LOG_MSG_ERROR("Failed to retrieve meta remap storage segments!");
|
|
goto end;
|
|
}
|
|
|
|
/* Initialize journal map. */
|
|
ctx->journal_map_info.map_storage = calloc(1, ctx->header.layout.journal_map_table_size);
|
|
if (!ctx->journal_map_info.map_storage)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for journal map info!");
|
|
goto end;
|
|
}
|
|
|
|
if (save_remap_read(&ctx->meta_remap_storage, ctx->journal_map_info.map_storage, ctx->header.layout.journal_map_table_offset, ctx->header.layout.journal_map_table_size) != ctx->header.layout.journal_map_table_size)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read map storage from journal map info in meta remap storage!");
|
|
goto end;
|
|
}
|
|
|
|
/* Initialize journal storage. */
|
|
ctx->journal_storage.header = &ctx->header.journal_header;
|
|
ctx->journal_storage.journal_data_offset = ctx->header.layout.journal_data_offset;
|
|
ctx->journal_storage._length = (ctx->journal_storage.header->total_size - ctx->journal_storage.header->journal_size);
|
|
ctx->journal_storage.file = ctx->file;
|
|
ctx->journal_storage.map.header = &ctx->header.map_header;
|
|
ctx->journal_storage.map.map_storage = ctx->journal_map_info.map_storage;
|
|
|
|
ctx->journal_storage.map.entries = calloc(sizeof(journal_map_entry_t), ctx->journal_storage.map.header->main_data_block_count);
|
|
if (!ctx->journal_storage.map.entries)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for journal map storage entries!");
|
|
goto end;
|
|
}
|
|
|
|
u32 *pos = (u32*)ctx->journal_storage.map.map_storage;
|
|
|
|
for(u32 i = 0; i < ctx->journal_storage.map.header->main_data_block_count; i++)
|
|
{
|
|
ctx->journal_storage.map.entries[i].virtual_index = i;
|
|
ctx->journal_storage.map.entries[i].physical_index = (*pos & 0x7FFFFFFF);
|
|
pos += 2;
|
|
}
|
|
|
|
ctx->journal_storage.block_size = ctx->journal_storage.header->block_size;
|
|
ctx->journal_storage._length = (ctx->journal_storage.header->total_size - ctx->journal_storage.header->journal_size);
|
|
|
|
/* Initialize core IVFC storage. */
|
|
for(u32 i = 0; i < 5; i++) ctx->core_data_ivfc_storage.levels[i].save_ctx = ctx;
|
|
|
|
if (!save_ivfc_storage_init(&ctx->core_data_ivfc_storage, ctx->header.layout.ivfc_master_hash_offset_a, &ctx->header.data_ivfc_header))
|
|
{
|
|
LOG_MSG_ERROR("Failed to initialize core IVFC storage!");
|
|
goto end;
|
|
}
|
|
|
|
/* Initialize FAT storage. */
|
|
if (ctx->header.layout.version < 0x50000)
|
|
{
|
|
ctx->fat_storage = calloc(1, ctx->header.layout.fat_size);
|
|
if (!ctx->fat_storage)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for FAT storage!");
|
|
goto end;
|
|
}
|
|
|
|
if (save_remap_read(&ctx->meta_remap_storage, ctx->fat_storage, ctx->header.layout.fat_offset, ctx->header.layout.fat_size) != ctx->header.layout.fat_size)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read FAT storage from meta remap storage!");
|
|
goto end;
|
|
}
|
|
} else {
|
|
for(u32 i = 0; i < 5; i++) ctx->fat_ivfc_storage.levels[i].save_ctx = ctx;
|
|
|
|
if (!save_ivfc_storage_init(&ctx->fat_ivfc_storage, ctx->header.layout.fat_ivfc_master_hash_a, &ctx->header.fat_ivfc_header))
|
|
{
|
|
LOG_MSG_ERROR("Failed to initialize FAT storage! (IVFC).");
|
|
goto end;
|
|
}
|
|
|
|
ctx->fat_storage = calloc(1, ctx->fat_ivfc_storage._length);
|
|
if (!ctx->fat_storage)
|
|
{
|
|
LOG_MSG_ERROR("Failed to allocate memory for FAT storage! (IVFC).");
|
|
goto end;
|
|
}
|
|
|
|
if (save_remap_read(&ctx->meta_remap_storage, ctx->fat_storage, ctx->header.fat_ivfc_header.level_headers[ctx->header.fat_ivfc_header.num_levels - 2].logical_offset, ctx->fat_ivfc_storage._length) != ctx->fat_ivfc_storage._length)
|
|
{
|
|
LOG_MSG_ERROR("Failed to read FAT storage from meta remap storage! (IVFC).");
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
if (ctx->tool_ctx.action & ACTION_VERIFY)
|
|
{
|
|
if (save_filesystem_verify(ctx) == VALIDITY_INVALID)
|
|
{
|
|
LOG_MSG_ERROR("Savefile FS verification failed!");
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
/* Initialize core save filesystem. */
|
|
ctx->save_filesystem_core.base_storage = &ctx->core_data_ivfc_storage;
|
|
if (!save_filesystem_init(&ctx->save_filesystem_core, ctx->fat_storage, &ctx->header.save_header, &ctx->header.fat_header))
|
|
{
|
|
LOG_MSG_ERROR("Failed to initialize savefile FS!");
|
|
goto end;
|
|
}
|
|
|
|
success = true;
|
|
|
|
end:
|
|
if (!success) save_free_contexts(ctx);
|
|
|
|
return success;
|
|
}
|
|
|
|
bool save_process_header(save_ctx_t *ctx)
|
|
{
|
|
if (!ctx)
|
|
{
|
|
LOG_MSG_ERROR("Invalid parameters!");
|
|
return false;
|
|
}
|
|
|
|
if (ctx->header.layout.magic != MAGIC_DISF || ctx->header.duplex_header.magic != MAGIC_DPFS || \
|
|
ctx->header.data_ivfc_header.magic != MAGIC_IVFC || ctx->header.journal_header.magic != MAGIC_JNGL || \
|
|
ctx->header.save_header.magic != MAGIC_SAVE || ctx->header.main_remap_header.magic != MAGIC_RMAP || \
|
|
ctx->header.meta_remap_header.magic != MAGIC_RMAP)
|
|
{
|
|
LOG_MSG_ERROR("Save header is corrupt!");
|
|
return false;
|
|
}
|
|
|
|
ctx->data_ivfc_master = ((u8*)&ctx->header + ctx->header.layout.ivfc_master_hash_offset_a);
|
|
ctx->fat_ivfc_master = ((u8*)&ctx->header + ctx->header.layout.fat_ivfc_master_hash_a);
|
|
|
|
u8 hash[SHA256_HASH_SIZE];
|
|
sha256CalculateHash(hash, &ctx->header.duplex_header, 0x3D00);
|
|
|
|
ctx->header_hash_validity = (memcmp(hash, ctx->header.layout.hash, SHA256_HASH_SIZE) == 0 ? VALIDITY_VALID : VALIDITY_INVALID);
|
|
|
|
ctx->header.data_ivfc_header.num_levels = 5;
|
|
|
|
if (ctx->header.layout.version >= 0x50000) ctx->header.fat_ivfc_header.num_levels = 4;
|
|
|
|
return true;
|
|
}
|
|
|
|
void save_free_contexts(save_ctx_t *ctx)
|
|
{
|
|
if (!ctx) return;
|
|
|
|
if (ctx->data_remap_storage.segments)
|
|
{
|
|
if (ctx->data_remap_storage.header)
|
|
{
|
|
for(u32 i = 0; i < ctx->data_remap_storage.header->map_segment_count; i++)
|
|
{
|
|
if (ctx->data_remap_storage.segments[i].entries) free(ctx->data_remap_storage.segments[i].entries);
|
|
}
|
|
}
|
|
|
|
free(ctx->data_remap_storage.segments);
|
|
ctx->data_remap_storage.segments = NULL;
|
|
}
|
|
|
|
if (ctx->data_remap_storage.map_entries)
|
|
{
|
|
free(ctx->data_remap_storage.map_entries);
|
|
ctx->data_remap_storage.map_entries = NULL;
|
|
}
|
|
|
|
if (ctx->meta_remap_storage.segments)
|
|
{
|
|
if (ctx->meta_remap_storage.header)
|
|
{
|
|
for(u32 i = 0; i < ctx->meta_remap_storage.header->map_segment_count; i++)
|
|
{
|
|
if (ctx->meta_remap_storage.segments[i].entries) free(ctx->meta_remap_storage.segments[i].entries);
|
|
}
|
|
}
|
|
|
|
free(ctx->meta_remap_storage.segments);
|
|
ctx->meta_remap_storage.segments = NULL;
|
|
}
|
|
|
|
if (ctx->meta_remap_storage.map_entries)
|
|
{
|
|
free(ctx->meta_remap_storage.map_entries);
|
|
ctx->meta_remap_storage.map_entries = NULL;
|
|
}
|
|
|
|
if (ctx->duplex_storage.layers[0].bitmap.bitmap)
|
|
{
|
|
free(ctx->duplex_storage.layers[0].bitmap.bitmap);
|
|
ctx->duplex_storage.layers[0].bitmap.bitmap = NULL;
|
|
}
|
|
|
|
if (ctx->duplex_storage.layers[1].bitmap.bitmap)
|
|
{
|
|
free(ctx->duplex_storage.layers[1].bitmap.bitmap);
|
|
ctx->duplex_storage.layers[1].bitmap.bitmap = NULL;
|
|
}
|
|
|
|
if (ctx->duplex_storage.layers[1].bitmap_storage)
|
|
{
|
|
free(ctx->duplex_storage.layers[1].bitmap_storage);
|
|
ctx->duplex_storage.layers[1].bitmap_storage = NULL;
|
|
}
|
|
|
|
for(u32 i = 1; i < 3; i++)
|
|
{
|
|
if (ctx->duplex_layers[i].data_a)
|
|
{
|
|
free(ctx->duplex_layers[i].data_a);
|
|
ctx->duplex_layers[i].data_a = NULL;
|
|
}
|
|
|
|
if (ctx->duplex_layers[i].data_b)
|
|
{
|
|
free(ctx->duplex_layers[i].data_b);
|
|
ctx->duplex_layers[i].data_b = NULL;
|
|
}
|
|
}
|
|
|
|
if (ctx->journal_map_info.map_storage)
|
|
{
|
|
free(ctx->journal_map_info.map_storage);
|
|
ctx->journal_map_info.map_storage = NULL;
|
|
}
|
|
|
|
if (ctx->journal_storage.map.entries)
|
|
{
|
|
free(ctx->journal_storage.map.entries);
|
|
ctx->journal_storage.map.entries = NULL;
|
|
}
|
|
|
|
for(u32 i = 0; i < ctx->header.data_ivfc_header.num_levels - 1; i++)
|
|
{
|
|
if (ctx->core_data_ivfc_storage.integrity_storages[i].block_validities)
|
|
{
|
|
free(ctx->core_data_ivfc_storage.integrity_storages[i].block_validities);
|
|
ctx->core_data_ivfc_storage.integrity_storages[i].block_validities = NULL;
|
|
}
|
|
}
|
|
|
|
if (ctx->core_data_ivfc_storage.level_validities)
|
|
{
|
|
free(ctx->core_data_ivfc_storage.level_validities);
|
|
ctx->core_data_ivfc_storage.level_validities = NULL;
|
|
}
|
|
|
|
if (ctx->header.layout.version >= 0x50000)
|
|
{
|
|
for(u32 i = 0; i < ctx->header.fat_ivfc_header.num_levels - 1; i++)
|
|
{
|
|
if (ctx->fat_ivfc_storage.integrity_storages[i].block_validities)
|
|
{
|
|
free(ctx->fat_ivfc_storage.integrity_storages[i].block_validities);
|
|
ctx->fat_ivfc_storage.integrity_storages[i].block_validities = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ctx->fat_ivfc_storage.level_validities)
|
|
{
|
|
free(ctx->fat_ivfc_storage.level_validities);
|
|
ctx->fat_ivfc_storage.level_validities = NULL;
|
|
}
|
|
|
|
if (ctx->fat_storage)
|
|
{
|
|
free(ctx->fat_storage);
|
|
ctx->fat_storage = NULL;
|
|
}
|
|
}
|
|
|
|
save_ctx_t *save_open_savefile(const char *path, u32 action)
|
|
{
|
|
if (!path || !*path)
|
|
{
|
|
LOG_MSG_ERROR("Invalid savefile path!");
|
|
return NULL;
|
|
}
|
|
|
|
FILE *save_fp = NULL;
|
|
save_ctx_t *save_ctx = NULL;
|
|
bool success = false;
|
|
|
|
save_fp = fopen(path, "rb");
|
|
if (!save_fp)
|
|
{
|
|
LOG_MSG_ERROR("Failed to open savefile \"%s\"! (%d).", path, errno);
|
|
goto end;
|
|
}
|
|
|
|
save_ctx = calloc(1, sizeof(save_ctx_t));
|
|
if (!save_ctx)
|
|
{
|
|
LOG_MSG_ERROR("Unable to allocate memory for savefile \"%s\" context!", path);
|
|
goto end;
|
|
}
|
|
|
|
save_ctx->file = save_fp;
|
|
save_ctx->tool_ctx.action = action;
|
|
|
|
success = save_process(save_ctx);
|
|
if (!success) LOG_MSG_ERROR("Failed to process savefile \"%s\"!", path);
|
|
|
|
end:
|
|
if (!success)
|
|
{
|
|
if (save_ctx)
|
|
{
|
|
free(save_ctx);
|
|
save_ctx = NULL;
|
|
}
|
|
|
|
if (save_fp) fclose(save_fp);
|
|
}
|
|
|
|
return save_ctx;
|
|
}
|
|
|
|
void save_close_savefile(save_ctx_t **ctx)
|
|
{
|
|
if (!ctx || !*ctx) return;
|
|
|
|
if ((*ctx)->file) fclose((*ctx)->file);
|
|
|
|
save_free_contexts(*ctx);
|
|
|
|
free(*ctx);
|
|
*ctx = NULL;
|
|
}
|
|
|
|
bool save_get_fat_storage_from_file_entry_by_path(save_ctx_t *ctx, const char *path, allocation_table_storage_ctx_t *out_fat_storage, u64 *out_file_entry_size)
|
|
{
|
|
if (!ctx || !path || !*path || !out_fat_storage || !out_file_entry_size)
|
|
{
|
|
LOG_MSG_ERROR("Invalid file entry path!");
|
|
return false;
|
|
}
|
|
|
|
save_fs_list_entry_t entry = {0};
|
|
|
|
if (!save_hierarchical_file_table_get_file_entry_by_path(&(ctx->save_filesystem_core.file_table), path, &entry))
|
|
{
|
|
LOG_MSG_ERROR("Failed to get file entry for \"%s\" in savefile!", path);
|
|
return false;
|
|
}
|
|
|
|
if (!save_open_fat_storage(&(ctx->save_filesystem_core), out_fat_storage, entry.value.save_file_info.start_block))
|
|
{
|
|
LOG_MSG_ERROR("Failed to open FAT storage at block 0x%X for \"%s\" in savefile!", entry.value.save_file_info.start_block, path);
|
|
return false;
|
|
}
|
|
|
|
*out_file_entry_size = entry.value.save_file_info.length;
|
|
|
|
return true;
|
|
}
|