/* * nca.c * * Copyright (c) 2020, DarkMatterCore . * * This file is part of nxdumptool (https://github.com/DarkMatterCore/nxdumptool). * * nxdumptool is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * nxdumptool is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "utils.h" #include "nca.h" #include "keys.h" #include "aes.h" #include "rsa.h" #include "gamecard.h" #include "title.h" #define NCA_CRYPTO_BUFFER_SIZE 0x800000 /* 8 MiB. */ /* Global variables. */ static u8 *g_ncaCryptoBuffer = NULL; static Mutex g_ncaCryptoBufferMutex = 0; static const u8 g_nca0KeyAreaHash[SHA256_HASH_SIZE] = { 0x9A, 0xBB, 0xD2, 0x11, 0x86, 0x00, 0x21, 0x9D, 0x7A, 0xDC, 0x5B, 0x43, 0x95, 0xF8, 0x4E, 0xFD, 0xFF, 0x6B, 0x25, 0xEF, 0x9F, 0x96, 0x85, 0x28, 0x18, 0x9E, 0x76, 0xB0, 0x92, 0xF0, 0x6A, 0xCB }; /* Function prototypes. */ NX_INLINE bool ncaIsFsInfoEntryValid(NcaFsInfo *fs_info); static bool ncaReadDecryptedHeader(NcaContext *ctx); static bool ncaDecryptKeyArea(NcaContext *ctx); static bool ncaEncryptKeyArea(NcaContext *ctx); NX_INLINE bool ncaIsVersion0KeyAreaEncrypted(NcaContext *ctx); NX_INLINE u8 ncaGetKeyGenerationValue(NcaContext *ctx); NX_INLINE bool ncaCheckRightsIdAvailability(NcaContext *ctx); NX_INLINE void ncaInitializeAesCtrIv(u8 *out, const u8 *ctr, u64 offset); NX_INLINE void ncaUpdateAesCtrIv(u8 *ctr, u64 offset); NX_INLINE void ncaUpdateAesCtrExIv(u8 *ctr, u32 ctr_val, u64 offset); static bool _ncaReadFsSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset, bool lock); static bool _ncaReadAesCtrExStorageFromBktrSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset, u32 ctr_val, bool lock); static bool ncaGenerateHashDataPatch(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, void *out, bool is_integrity_patch); static void ncaWriteHashDataPatchToMemoryBuffer(NcaContext *ctx, NcaHashDataPatch *layer_patch, void *buf, u64 buf_size, u64 buf_offset); static void *_ncaGenerateEncryptedFsSectionBlock(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, u64 *out_block_size, u64 *out_block_offset, bool lock); bool ncaAllocateCryptoBuffer(void) { mutexLock(&g_ncaCryptoBufferMutex); if (!g_ncaCryptoBuffer) g_ncaCryptoBuffer = malloc(NCA_CRYPTO_BUFFER_SIZE); bool ret = (g_ncaCryptoBuffer != NULL); mutexUnlock(&g_ncaCryptoBufferMutex); return ret; } void ncaFreeCryptoBuffer(void) { mutexLock(&g_ncaCryptoBufferMutex); if (g_ncaCryptoBuffer) { free(g_ncaCryptoBuffer); g_ncaCryptoBuffer = NULL; } mutexUnlock(&g_ncaCryptoBufferMutex); } bool ncaInitializeContext(NcaContext *out, u8 storage_id, u8 hfs_partition_type, const NcmContentInfo *content_info, Ticket *tik) { NcmContentStorage *ncm_storage = NULL; if (!out || (storage_id != NcmStorageId_GameCard && !(ncm_storage = titleGetNcmStorageByStorageId(storage_id))) || \ (storage_id == NcmStorageId_GameCard && hfs_partition_type >= GameCardHashFileSystemPartitionType_Count) || !content_info || content_info->content_type > NcmContentType_DeltaFragment || !tik) { LOGFILE("Invalid parameters!"); return false; } /* Clear output NCA context. */ memset(out, 0, sizeof(NcaContext)); /* Fill NCA context. */ out->storage_id = storage_id; out->ncm_storage = (out->storage_id != NcmStorageId_GameCard ? ncm_storage : NULL); memcpy(&(out->content_id), &(content_info->content_id), sizeof(NcmContentId)); utilsGenerateHexStringFromData(out->content_id_str, sizeof(out->content_id_str), out->content_id.c, sizeof(out->content_id.c)); utilsGenerateHexStringFromData(out->hash_str, sizeof(out->hash_str), out->hash, sizeof(out->hash)); /* Placeholder, needs to be manually calculated. */ out->content_type = content_info->content_type; out->id_offset = content_info->id_offset; titleConvertNcmContentSizeToU64(content_info->size, &(out->content_size)); if (out->content_size < NCA_FULL_HEADER_LENGTH) { LOGFILE("Invalid size for NCA \"%s\"!", out->content_id_str); return false; } if (out->storage_id == NcmStorageId_GameCard) { /* Retrieve gamecard NCA offset. */ char nca_filename[0x30] = {0}; sprintf(nca_filename, "%s.%s", out->content_id_str, out->content_type == NcmContentType_Meta ? "cnmt.nca" : "nca"); if (!gamecardGetEntryInfoFromHashFileSystemPartitionByName(hfs_partition_type, nca_filename, &(out->gamecard_offset), NULL)) { LOGFILE("Error retrieving offset for \"%s\" entry in secure hash FS partition!", nca_filename); return false; } } /* Read decrypted NCA header and NCA FS section headers. */ if (!ncaReadDecryptedHeader(out)) { LOGFILE("Failed to read decrypted NCA \"%s\" header!", out->content_id_str); return false; } if (out->rights_id_available) { /* Retrieve ticket. */ /* This will return true if it has already been retrieved. */ if (tikRetrieveTicketByRightsId(tik, &(out->header.rights_id), out->storage_id == NcmStorageId_GameCard)) { /* Copy decrypted titlekey. */ memcpy(out->titlekey, tik->dec_titlekey, 0x10); out->titlekey_retrieved = true; } else { LOGFILE("Error retrieving ticket for NCA \"%s\"!", out->content_id_str); } } /* Parse sections. */ for(u8 i = 0; i < NCA_FS_HEADER_COUNT; i++) { NcaFsInfo *fs_info = &(out->header.fs_info[i]); NcaFsSectionContext *fs_ctx = &(out->fs_ctx[i]); /* Fill section context. */ fs_ctx->nca_ctx = out; fs_ctx->section_num = i; fs_ctx->section_type = NcaFsSectionType_Invalid; /* Placeholder. */ /* Don't proceed if this NCA FS section isn't populated. */ if (!ncaIsFsInfoEntryValid(fs_info)) continue; /* Calculate section offset and size. */ fs_ctx->section_offset = NCA_FS_SECTOR_OFFSET(fs_info->start_sector); fs_ctx->section_size = (NCA_FS_SECTOR_OFFSET(fs_info->end_sector) - fs_ctx->section_offset); /* Check if we're dealing with an invalid offset/size. */ if (fs_ctx->section_offset < sizeof(NcaHeader) || !fs_ctx->section_size || \ (fs_ctx->section_offset + fs_ctx->section_size) > out->content_size) continue; /* Determine encryption type. */ fs_ctx->encryption_type = (out->format_version == NcaVersion_Nca0 ? NcaEncryptionType_AesXts : fs_ctx->header.encryption_type); if (fs_ctx->encryption_type == NcaEncryptionType_Auto) { switch(fs_ctx->section_num) { case 0: /* ExeFS Partition FS. */ case 1: /* RomFS. */ fs_ctx->encryption_type = NcaEncryptionType_AesCtr; break; case 2: /* Logo Partition FS. */ fs_ctx->encryption_type = NcaEncryptionType_None; break; default: break; } } /* Check if we're dealing with an invalid encryption type value. */ if (fs_ctx->encryption_type == NcaEncryptionType_Auto || fs_ctx->encryption_type > NcaEncryptionType_AesCtrEx) continue; /* Determine FS section type. */ if (fs_ctx->header.fs_type == NcaFsType_PartitionFs && fs_ctx->header.hash_type == NcaHashType_HierarchicalSha256) { fs_ctx->section_type = NcaFsSectionType_PartitionFs; } else if (fs_ctx->header.fs_type == NcaFsType_RomFs && fs_ctx->header.hash_type == NcaHashType_HierarchicalIntegrity) { fs_ctx->section_type = (fs_ctx->encryption_type == NcaEncryptionType_AesCtrEx ? NcaFsSectionType_PatchRomFs : NcaFsSectionType_RomFs); } else if (fs_ctx->header.fs_type == NcaFsType_RomFs && fs_ctx->header.hash_type == NcaHashType_HierarchicalSha256 && out->format_version == NcaVersion_Nca0) { fs_ctx->section_type = NcaFsSectionType_Nca0RomFs; } /* Check if we're dealing with an invalid section type value. */ if (fs_ctx->section_type >= NcaFsSectionType_Invalid) continue; /* Initialize crypto data. */ if ((!out->rights_id_available || (out->rights_id_available && out->titlekey_retrieved)) && fs_ctx->encryption_type > NcaEncryptionType_None && \ fs_ctx->encryption_type <= NcaEncryptionType_AesCtrEx) { /* Initialize section CTR. */ ncaInitializeAesCtrIv(fs_ctx->ctr, fs_ctx->header.aes_ctr_upper_iv.value, fs_ctx->section_offset); /* Initialize AES context. */ if (out->rights_id_available) { /* AES-128-CTR is always used for FS crypto in NCAs with a rights ID. */ aes128CtrContextCreate(&(fs_ctx->ctr_ctx), out->titlekey, fs_ctx->ctr); } else { if (fs_ctx->encryption_type == NcaEncryptionType_AesXts) { /* We need to create two different contexts: one for decryption and another one for encryption. */ aes128XtsContextCreate(&(fs_ctx->xts_decrypt_ctx), out->decrypted_key_area.aes_xts_1, out->decrypted_key_area.aes_xts_2, false); aes128XtsContextCreate(&(fs_ctx->xts_encrypt_ctx), out->decrypted_key_area.aes_xts_1, out->decrypted_key_area.aes_xts_2, true); } else if (fs_ctx->encryption_type == NcaEncryptionType_AesCtr || fs_ctx->encryption_type == NcaEncryptionType_AesCtrEx) { aes128CtrContextCreate(&(fs_ctx->ctr_ctx), out->decrypted_key_area.aes_ctr, fs_ctx->ctr); } } } /* Enable FS context if we got up to this point. */ fs_ctx->enabled = true; } return true; } bool ncaReadContentFile(NcaContext *ctx, void *out, u64 read_size, u64 offset) { if (!ctx || !strlen(ctx->content_id_str) || (ctx->storage_id != NcmStorageId_GameCard && !ctx->ncm_storage) || (ctx->storage_id == NcmStorageId_GameCard && !ctx->gamecard_offset) || !out || \ !read_size || offset >= ctx->content_size || (offset + read_size) > ctx->content_size) { LOGFILE("Invalid parameters!"); return false; } Result rc = 0; bool ret = false; if (ctx->storage_id != NcmStorageId_GameCard) { /* Retrieve NCA data normally. */ /* This strips NAX0 crypto from SD card NCAs (not used on eMMC NCAs). */ rc = ncmContentStorageReadContentIdFile(ctx->ncm_storage, out, read_size, &(ctx->content_id), offset); ret = R_SUCCEEDED(rc); if (!ret) LOGFILE("Failed to read 0x%lX bytes block at offset 0x%lX from NCA \"%s\"! (0x%08X) (ncm).", read_size, offset, ctx->content_id_str, rc); } else { /* Retrieve NCA data using raw gamecard reads. */ /* Fixes NCA read issues with gamecards under HOS < 4.0.0 when using ncmContentStorageReadContentIdFile(). */ ret = gamecardReadStorage(out, read_size, ctx->gamecard_offset + offset); if (!ret) LOGFILE("Failed to read 0x%lX bytes block at offset 0x%lX from NCA \"%s\"! (gamecard).", read_size, offset, ctx->content_id_str); } return ret; } bool ncaReadFsSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset) { return _ncaReadFsSection(ctx, out, read_size, offset, true); } bool ncaReadAesCtrExStorageFromBktrSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset, u32 ctr_val) { return _ncaReadAesCtrExStorageFromBktrSection(ctx, out, read_size, offset, ctr_val, true); } void *ncaGenerateEncryptedFsSectionBlock(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, u64 *out_block_size, u64 *out_block_offset) { return _ncaGenerateEncryptedFsSectionBlock(ctx, data, data_size, data_offset, out_block_size, out_block_offset, true); } bool ncaGenerateHierarchicalSha256Patch(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, NcaHierarchicalSha256Patch *out) { return ncaGenerateHashDataPatch(ctx, data, data_size, data_offset, out, false); } void ncaWriteHierarchicalSha256PatchToMemoryBuffer(NcaContext *ctx, NcaHierarchicalSha256Patch *patch, void *buf, u64 buf_size, u64 buf_offset) { if (!ctx || !strlen(ctx->content_id_str) || ctx->content_size < NCA_FULL_HEADER_LENGTH || !patch || memcmp(patch->content_id.c, ctx->content_id.c, 0x10) != 0 || !patch->hash_region_count || \ patch->hash_region_count > NCA_HIERARCHICAL_SHA256_MAX_REGION_COUNT || !buf || !buf_size || buf_offset >= ctx->content_size || (buf_offset + buf_size) > ctx->content_size) return; for(u32 i = 0; i < patch->hash_region_count; i++) ncaWriteHashDataPatchToMemoryBuffer(ctx, &(patch->hash_region_patch[i]), buf, buf_size, buf_offset); } bool ncaGenerateHierarchicalIntegrityPatch(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, NcaHierarchicalIntegrityPatch *out) { return ncaGenerateHashDataPatch(ctx, data, data_size, data_offset, out, true); } void ncaWriteHierarchicalIntegrityPatchToMemoryBuffer(NcaContext *ctx, NcaHierarchicalIntegrityPatch *patch, void *buf, u64 buf_size, u64 buf_offset) { if (!ctx || !strlen(ctx->content_id_str) || ctx->content_size < NCA_FULL_HEADER_LENGTH || !patch || memcmp(patch->content_id.c, ctx->content_id.c, 0x10) != 0 || !buf || !buf_size || \ buf_offset >= ctx->content_size || (buf_offset + buf_size) > ctx->content_size) return; for(u32 i = 0; i < NCA_IVFC_LEVEL_COUNT; i++) ncaWriteHashDataPatchToMemoryBuffer(ctx, &(patch->hash_level_patch[i]), buf, buf_size, buf_offset); } const char *ncaGetFsSectionTypeName(NcaFsSectionContext *ctx) { NcaContext *nca_ctx = NULL; const char *str = "Invalid"; if (!ctx || !ctx->enabled || !(nca_ctx = (NcaContext*)ctx->nca_ctx)) return str; switch(ctx->section_type) { case NcaFsSectionType_PartitionFs: str = ((nca_ctx->content_type == NcmContentType_Program && ctx->section_num == 0) ? "ExeFS" : "Partition FS"); break; case NcaFsSectionType_RomFs: str = "RomFS"; break; case NcaFsSectionType_PatchRomFs: str = "Patch RomFS [BKTR]"; break; case NcaFsSectionType_Nca0RomFs: str = "NCA0 RomFS"; break; default: break; } return str; } void ncaRemoveTitlekeyCrypto(NcaContext *ctx) { if (!ctx || ctx->content_size < NCA_FULL_HEADER_LENGTH || !ctx->rights_id_available || !ctx->titlekey_retrieved) return; /* Copy decrypted titlekey to the decrypted NCA key area. */ /* This will be reencrypted at a later stage. */ for(u8 i = 0; i < NCA_FS_HEADER_COUNT; i++) { /* AES-128-XTS is not used in FS sections from NCAs with titlekey crypto. */ NcaFsSectionContext *fs_ctx = &(ctx->fs_ctx[i]); if (!fs_ctx->enabled || (fs_ctx->encryption_type != NcaEncryptionType_AesCtr && fs_ctx->encryption_type != NcaEncryptionType_AesCtrEx)) continue; u8 *key_ptr = (fs_ctx->encryption_type == NcaEncryptionType_AesCtr ? ctx->decrypted_key_area.aes_ctr : ctx->decrypted_key_area.aes_ctr_ex); memcpy(key_ptr, ctx->titlekey, AES_128_KEY_SIZE); } /* Wipe Rights ID. */ memset(&(ctx->header.rights_id), 0, sizeof(FsRightsId)); /* Update context flags. */ ctx->rights_id_available = false; } bool ncaEncryptHeader(NcaContext *ctx) { if (!ctx || !strlen(ctx->content_id_str) || ctx->content_size < NCA_FULL_HEADER_LENGTH) { LOGFILE("Invalid NCA context!"); return false; } /* Safety check: don't encrypt the header if we don't need to. */ if (!ncaIsHeaderDirty(ctx)) return true; size_t crypt_res = 0; const u8 *header_key = keysGetNcaHeaderKey(); Aes128XtsContext hdr_aes_ctx = {0}, nca0_fs_header_ctx = {0}; /* Encrypt NCA key area. */ if (!ctx->rights_id_available && !ncaEncryptKeyArea(ctx)) { LOGFILE("Error encrypting NCA \"%s\" key area!", ctx->content_id_str); return false; } /* Prepare AES-128-XTS contexts. */ aes128XtsContextCreate(&hdr_aes_ctx, header_key, header_key + AES_128_KEY_SIZE, true); if (ctx->format_version == NcaVersion_Nca0) aes128XtsContextCreate(&nca0_fs_header_ctx, ctx->decrypted_key_area.aes_xts_1, ctx->decrypted_key_area.aes_xts_2, true); /* Encrypt NCA header. */ crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->encrypted_header), &(ctx->header), sizeof(NcaHeader), 0, NCA_AES_XTS_SECTOR_SIZE, true); if (crypt_res != sizeof(NcaHeader)) { LOGFILE("Error encrypting NCA \"%s\" header!", ctx->content_id_str); return false; } /* Encrypt NCA FS section headers. */ /* Both NCA2 and NCA3 place the NCA FS section headers right after the NCA header. However, NCA0 places them at the start sector from each NCA FS section. */ for(u8 i = 0; i < NCA_FS_HEADER_COUNT; i++) { NcaFsInfo *fs_info = &(ctx->header.fs_info[i]); NcaFsSectionContext *fs_ctx = &(ctx->fs_ctx[i]); /* Don't proceed if this NCA FS section isn't populated. */ if (ctx->format_version != NcaVersion_Nca3 && !ncaIsFsInfoEntryValid(fs_info)) continue; /* The AES-XTS sector number for each NCA FS header varies depending on the NCA format version. */ /* NCA3 uses sector number 0 for the NCA header, then increases it with each new sector (e.g. making the first NCA FS section header use sector number 2, and so on). */ /* NCA2 uses sector number 0 for each NCA FS section header. */ /* NCA0 uses sector number 0 for the NCA header, then uses sector number 0 for the rest of the data and increases it with each new sector. */ Aes128XtsContext *aes_xts_ctx = (ctx->format_version != NcaVersion_Nca0 ? &hdr_aes_ctx : &nca0_fs_header_ctx); u64 sector = (ctx->format_version == NcaVersion_Nca3 ? (2U + i) : (ctx->format_version == NcaVersion_Nca2 ? 0 : (fs_info->start_sector - 2))); crypt_res = aes128XtsNintendoCrypt(aes_xts_ctx, &(fs_ctx->encrypted_header), &(fs_ctx->header), sizeof(NcaFsHeader), sector, NCA_AES_XTS_SECTOR_SIZE, true); if (crypt_res != sizeof(NcaFsHeader)) { LOGFILE("Error encrypting NCA%u \"%s\" FS section header #%u!", ctx->format_version, ctx->content_id_str, i); return false; } } return true; } void ncaUpdateContentIdAndHash(NcaContext *ctx, u8 hash[SHA256_HASH_SIZE]) { if (!ctx) return; memcpy(ctx->content_id.c, hash, sizeof(ctx->content_id.c)); utilsGenerateHexStringFromData(ctx->content_id_str, sizeof(ctx->content_id_str), ctx->content_id.c, sizeof(ctx->content_id.c)); memcpy(ctx->hash, hash, sizeof(ctx->hash)); utilsGenerateHexStringFromData(ctx->hash_str, sizeof(ctx->hash_str), ctx->hash, sizeof(ctx->hash)); } NX_INLINE bool ncaIsFsInfoEntryValid(NcaFsInfo *fs_info) { if (!fs_info) return false; NcaFsInfo tmp_fs_info = {0}; return (memcmp(&tmp_fs_info, fs_info, sizeof(NcaFsInfo)) != 0); } static bool ncaReadDecryptedHeader(NcaContext *ctx) { if (!ctx || !strlen(ctx->content_id_str) || ctx->content_size < NCA_FULL_HEADER_LENGTH) { LOGFILE("Invalid NCA context!"); return false; } u32 magic = 0; size_t crypt_res = 0; const u8 *header_key = keysGetNcaHeaderKey(); Aes128XtsContext hdr_aes_ctx = {0}, nca0_fs_header_ctx = {0}; /* Read NCA header. */ if (!ncaReadContentFile(ctx, &(ctx->encrypted_header), sizeof(NcaHeader), 0)) { LOGFILE("Failed to read NCA \"%s\" header!", ctx->content_id_str); return false; } /* Prepare NCA header AES-128-XTS context. */ aes128XtsContextCreate(&hdr_aes_ctx, header_key, header_key + AES_128_KEY_SIZE, false); /* Decrypt NCA header. */ crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header), &(ctx->encrypted_header), sizeof(NcaHeader), 0, NCA_AES_XTS_SECTOR_SIZE, false); magic = __builtin_bswap32(ctx->header.magic); if (crypt_res != sizeof(NcaHeader) || (magic != NCA_NCA3_MAGIC && magic != NCA_NCA2_MAGIC && magic != NCA_NCA0_MAGIC) || ctx->header.content_size != ctx->content_size) { LOGFILE("Error decrypting NCA \"%s\" header!", ctx->content_id_str); return false; } /* Fill additional NCA context info. */ ctx->format_version = (magic == NCA_NCA3_MAGIC ? NcaVersion_Nca3 : (magic == NCA_NCA2_MAGIC ? NcaVersion_Nca2 : NcaVersion_Nca0)); ctx->key_generation = ncaGetKeyGenerationValue(ctx); ctx->rights_id_available = ncaCheckRightsIdAvailability(ctx); sha256CalculateHash(ctx->header_hash, &(ctx->header), sizeof(NcaHeader)); /* Decrypt NCA key area (if needed). */ if (!ctx->rights_id_available && !ncaDecryptKeyArea(ctx)) { LOGFILE("Error decrypting NCA \"%s\" key area!", ctx->content_id_str); return false; } /* Prepare NCA0 FS header AES-128-XTS context (if needed). */ if (ctx->format_version == NcaVersion_Nca0) aes128XtsContextCreate(&nca0_fs_header_ctx, ctx->decrypted_key_area.aes_xts_1, ctx->decrypted_key_area.aes_xts_2, false); /* Read decrypted NCA FS section headers. */ /* Both NCA2 and NCA3 place the NCA FS section headers right after the NCA header. However, NCA0 places them at the start sector from each NCA FS section. */ for(u8 i = 0; i < NCA_FS_HEADER_COUNT; i++) { NcaFsInfo *fs_info = &(ctx->header.fs_info[i]); NcaFsSectionContext *fs_ctx = &(ctx->fs_ctx[i]); /* Don't proceed if this NCA FS section isn't populated. */ if (ctx->format_version != NcaVersion_Nca3 && !ncaIsFsInfoEntryValid(fs_info)) continue; /* Read NCA FS section header. */ u64 fs_header_offset = (ctx->format_version != NcaVersion_Nca0 ? (sizeof(NcaHeader) + (i * sizeof(NcaFsHeader))) : NCA_FS_SECTOR_OFFSET(fs_info->start_sector)); if (!ncaReadContentFile(ctx, &(fs_ctx->encrypted_header), sizeof(NcaFsHeader), fs_header_offset)) { LOGFILE("Failed to read NCA%u \"%s\" FS section header #%u at offset 0x%lX!", ctx->format_version, ctx->content_id_str, i, fs_header_offset); return false; } /* The AES-XTS sector number for each NCA FS header varies depending on the NCA format version. */ /* NCA3 uses sector number 0 for the NCA header, then increases it with each new sector (e.g. making the first NCA FS section header use sector number 2, and so on). */ /* NCA2 uses sector number 0 for each NCA FS section header. */ /* NCA0 uses sector number 0 for the NCA header, then uses sector number 0 for the rest of the data and increases it with each new sector. */ Aes128XtsContext *aes_xts_ctx = (ctx->format_version != NcaVersion_Nca0 ? &hdr_aes_ctx : &nca0_fs_header_ctx); u64 sector = (ctx->format_version == NcaVersion_Nca3 ? (2U + i) : (ctx->format_version == NcaVersion_Nca2 ? 0 : (fs_info->start_sector - 2))); crypt_res = aes128XtsNintendoCrypt(aes_xts_ctx, &(fs_ctx->header), &(fs_ctx->encrypted_header), sizeof(NcaFsHeader), sector, NCA_AES_XTS_SECTOR_SIZE, false); if (crypt_res != sizeof(NcaFsHeader)) { LOGFILE("Error decrypting NCA%u \"%s\" FS section header #%u!", ctx->format_version, ctx->content_id_str, i); return false; } } return true; } static bool ncaDecryptKeyArea(NcaContext *ctx) { if (!ctx) { LOGFILE("Invalid NCA context!"); return false; } Result rc = 0; const u8 *kek_src = NULL; u8 key_count = 0, tmp_kek[AES_128_KEY_SIZE] = {0}; /* Check if we're dealing with a NCA0 with a plain text key area. */ if (ncaIsVersion0KeyAreaEncrypted(ctx)) { memcpy(&(ctx->decrypted_key_area), &(ctx->header.encrypted_key_area), NCA_USED_KEY_AREA_SIZE); return true; } kek_src = keysGetKeyAreaEncryptionKeySource(ctx->header.kaek_index); if (!kek_src) { LOGFILE("Unable to retrieve KAEK source for index 0x%02X!", ctx->header.kaek_index); return false; } rc = splCryptoGenerateAesKek(kek_src, ctx->key_generation, 0, tmp_kek); if (R_FAILED(rc)) { LOGFILE("splCryptoGenerateAesKek failed! (0x%08X).", rc); return false; } key_count = (ctx->format_version == NcaVersion_Nca0 ? 2 : 4); for(u8 i = 0; i < key_count; i++) { rc = splCryptoGenerateAesKey(tmp_kek, (u8*)&(ctx->header.encrypted_key_area) + (i * AES_128_KEY_SIZE), (u8*)&(ctx->decrypted_key_area) + (i * AES_128_KEY_SIZE)); if (R_FAILED(rc)) { LOGFILE("splCryptoGenerateAesKey failed to decrypt NCA key area entry #%u! (0x%08X).", i, rc); return false; } } return true; } static bool ncaEncryptKeyArea(NcaContext *ctx) { if (!ctx) { LOGFILE("Invalid NCA context!"); return false; } u8 key_count = 0; const u8 *kaek = NULL; Aes128Context key_area_ctx = {0}; /* Check if we're dealing with a NCA0 with a plaintext key area. */ if (ncaIsVersion0KeyAreaEncrypted(ctx)) { memcpy(&(ctx->header.encrypted_key_area), &(ctx->decrypted_key_area), NCA_USED_KEY_AREA_SIZE); return true; } kaek = keysGetKeyAreaEncryptionKey(ctx->key_generation, ctx->header.kaek_index); if (!kaek) { LOGFILE("Unable to retrieve KAEK for key generation 0x%02X and KAEK index 0x%02X!", ctx->key_generation, ctx->header.kaek_index); return false; } key_count = (ctx->format_version == NcaVersion_Nca0 ? 2 : 4); aes128ContextCreate(&key_area_ctx, kaek, true); for(u8 i = 0; i < key_count; i++) aes128EncryptBlock(&key_area_ctx, (u8*)&(ctx->header.encrypted_key_area) + (i * AES_128_KEY_SIZE), (u8*)&(ctx->decrypted_key_area) + (i * AES_128_KEY_SIZE)); return true; } NX_INLINE bool ncaIsVersion0KeyAreaEncrypted(NcaContext *ctx) { if (!ctx || ctx->format_version != NcaVersion_Nca0) return false; u8 nca0_key_area_hash[SHA256_HASH_SIZE] = {0}; sha256CalculateHash(nca0_key_area_hash, &(ctx->header.encrypted_key_area), NCA_USED_KEY_AREA_SIZE); if (!memcmp(nca0_key_area_hash, g_nca0KeyAreaHash, SHA256_HASH_SIZE)) return false; return true; } NX_INLINE u8 ncaGetKeyGenerationValue(NcaContext *ctx) { if (!ctx) return 0; return (ctx->header.key_generation > ctx->header.key_generation_old ? ctx->header.key_generation : ctx->header.key_generation_old); } NX_INLINE bool ncaCheckRightsIdAvailability(NcaContext *ctx) { if (!ctx) return false; bool rights_id_available = false; for(u8 i = 0; i < 0x10; i++) { if (ctx->header.rights_id.c[i] != 0) { rights_id_available = true; break; } } return rights_id_available; } NX_INLINE void ncaInitializeAesCtrIv(u8 *out, const u8 *ctr, u64 offset) { if (!out || !ctr) return; offset >>= 4; for(u8 i = 0; i < 8; i++) { out[i] = ctr[0x8 - i - 1]; out[0x10 - i - 1] = (u8)(offset & 0xFF); offset >>= 8; } } NX_INLINE void ncaUpdateAesCtrIv(u8 *ctr, u64 offset) { if (!ctr) return; offset >>= 4; for(u8 i = 0; i < 8; i++) { ctr[0x10 - i - 1] = (u8)(offset & 0xFF); offset >>= 8; } } NX_INLINE void ncaUpdateAesCtrExIv(u8 *ctr, u32 ctr_val, u64 offset) { if (!ctr) return; offset >>= 4; for(u8 i = 0; i < 8; i++) { ctr[0x10 - i - 1] = (u8)(offset & 0xFF); offset >>= 8; } for(u8 i = 0; i < 4; i++) { ctr[0x8 - i - 1] = (u8)(ctr_val & 0xFF); ctr_val >>= 8; } } static bool _ncaReadFsSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset, bool lock) { if (lock) mutexLock(&g_ncaCryptoBufferMutex); bool ret = false; if (!g_ncaCryptoBuffer || !ctx || !ctx->enabled || !ctx->nca_ctx || ctx->section_num >= NCA_FS_HEADER_COUNT || ctx->section_offset < sizeof(NcaHeader) || \ ctx->section_type >= NcaFsSectionType_Invalid || ctx->encryption_type == NcaEncryptionType_Auto || ctx->encryption_type > NcaEncryptionType_AesCtrEx || !out || !read_size || \ offset >= ctx->section_size || (offset + read_size) > ctx->section_size) { LOGFILE("Invalid NCA FS section header parameters!"); goto end; } size_t crypt_res = 0; u64 sector_num = 0; NcaContext *nca_ctx = (NcaContext*)ctx->nca_ctx; u64 content_offset = (ctx->section_offset + offset); u64 block_start_offset = 0, block_end_offset = 0, block_size = 0; u64 data_start_offset = 0, chunk_size = 0, out_chunk_size = 0; if (!strlen(nca_ctx->content_id_str) || (nca_ctx->storage_id != NcmStorageId_GameCard && !nca_ctx->ncm_storage) || (nca_ctx->storage_id == NcmStorageId_GameCard && !nca_ctx->gamecard_offset) || \ (nca_ctx->format_version != NcaVersion_Nca0 && nca_ctx->format_version != NcaVersion_Nca2 && nca_ctx->format_version != NcaVersion_Nca3) || content_offset >= nca_ctx->content_size || \ (content_offset + read_size) > nca_ctx->content_size) { LOGFILE("Invalid NCA header parameters!"); goto end; } /* Optimization for reads from plaintext FS sections or reads that are aligned to the AES-CTR / AES-XTS sector size. */ if (ctx->encryption_type == NcaEncryptionType_None || \ (ctx->encryption_type == NcaEncryptionType_AesXts && !(content_offset % NCA_AES_XTS_SECTOR_SIZE) && !(read_size % NCA_AES_XTS_SECTOR_SIZE)) || \ ((ctx->encryption_type == NcaEncryptionType_AesCtr || ctx->encryption_type == NcaEncryptionType_AesCtrEx) && !(content_offset % AES_BLOCK_SIZE) && !(read_size % AES_BLOCK_SIZE))) { /* Read data. */ if (!ncaReadContentFile(nca_ctx, out, read_size, content_offset)) { LOGFILE("Failed to read 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned).", read_size, content_offset, nca_ctx->content_id_str, ctx->section_num); goto end; } /* Return right away if we're dealing with a plaintext FS section. */ if (ctx->encryption_type == NcaEncryptionType_None) { ret = true; goto end; } /* Decrypt data. */ if (ctx->encryption_type == NcaEncryptionType_AesXts) { sector_num = ((nca_ctx->format_version != NcaVersion_Nca0 ? offset : (content_offset - sizeof(NcaHeader))) / NCA_AES_XTS_SECTOR_SIZE); crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_decrypt_ctx), out, out, read_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, false); if (crypt_res != read_size) { LOGFILE("Failed to AES-XTS decrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned).", read_size, content_offset, nca_ctx->content_id_str, \ ctx->section_num); goto end; } } else if (ctx->encryption_type == NcaEncryptionType_AesCtr || ctx->encryption_type == NcaEncryptionType_AesCtrEx) { ncaUpdateAesCtrIv(ctx->ctr, content_offset); aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr); aes128CtrCrypt(&(ctx->ctr_ctx), out, out, read_size); } ret = true; goto end; } /* Calculate offsets and block sizes. */ block_start_offset = ALIGN_DOWN(content_offset, ctx->encryption_type == NcaEncryptionType_AesXts ? NCA_AES_XTS_SECTOR_SIZE : AES_BLOCK_SIZE); block_end_offset = ALIGN_UP(content_offset + read_size, ctx->encryption_type == NcaEncryptionType_AesXts ? NCA_AES_XTS_SECTOR_SIZE : AES_BLOCK_SIZE); block_size = (block_end_offset - block_start_offset); data_start_offset = (content_offset - block_start_offset); chunk_size = (block_size > NCA_CRYPTO_BUFFER_SIZE ? NCA_CRYPTO_BUFFER_SIZE : block_size); out_chunk_size = (block_size > NCA_CRYPTO_BUFFER_SIZE ? (NCA_CRYPTO_BUFFER_SIZE - data_start_offset) : read_size); /* Read data. */ if (!ncaReadContentFile(nca_ctx, g_ncaCryptoBuffer, chunk_size, block_start_offset)) { LOGFILE("Failed to read 0x%lX bytes encrypted data block at offset 0x%lX from NCA \"%s\" FS section #%u! (unaligned).", chunk_size, block_start_offset, nca_ctx->content_id_str, \ ctx->section_num); goto end; } /* Decrypt data. */ if (ctx->encryption_type == NcaEncryptionType_AesXts) { sector_num = ((nca_ctx->format_version != NcaVersion_Nca0 ? offset : (content_offset - sizeof(NcaHeader))) / NCA_AES_XTS_SECTOR_SIZE); crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_decrypt_ctx), g_ncaCryptoBuffer, g_ncaCryptoBuffer, chunk_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, false); if (crypt_res != chunk_size) { LOGFILE("Failed to AES-XTS decrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (unaligned).", chunk_size, block_start_offset, nca_ctx->content_id_str, \ ctx->section_num); goto end; } } else if (ctx->encryption_type == NcaEncryptionType_AesCtr || ctx->encryption_type == NcaEncryptionType_AesCtrEx) { ncaUpdateAesCtrIv(ctx->ctr, block_start_offset); aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr); aes128CtrCrypt(&(ctx->ctr_ctx), g_ncaCryptoBuffer, g_ncaCryptoBuffer, chunk_size); } /* Copy decrypted data. */ memcpy(out, g_ncaCryptoBuffer + data_start_offset, out_chunk_size); ret = (block_size > NCA_CRYPTO_BUFFER_SIZE ? _ncaReadFsSection(ctx, (u8*)out + out_chunk_size, read_size - out_chunk_size, offset + out_chunk_size, false) : true); end: if (lock) mutexUnlock(&g_ncaCryptoBufferMutex); return ret; } static bool _ncaReadAesCtrExStorageFromBktrSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset, u32 ctr_val, bool lock) { if (lock) mutexLock(&g_ncaCryptoBufferMutex); bool ret = false; if (!g_ncaCryptoBuffer || !ctx || !ctx->enabled || !ctx->nca_ctx || ctx->section_num >= NCA_FS_HEADER_COUNT || ctx->section_offset < sizeof(NcaHeader) || \ ctx->section_type != NcaFsSectionType_PatchRomFs || ctx->encryption_type != NcaEncryptionType_AesCtrEx || !out || !read_size || offset >= ctx->section_size || \ (offset + read_size) > ctx->section_size) { LOGFILE("Invalid NCA FS section header parameters!"); goto end; } NcaContext *nca_ctx = (NcaContext*)ctx->nca_ctx; u64 content_offset = (ctx->section_offset + offset); u64 block_start_offset = 0, block_end_offset = 0, block_size = 0; u64 data_start_offset = 0, chunk_size = 0, out_chunk_size = 0; if (!strlen(nca_ctx->content_id_str) || (nca_ctx->storage_id != NcmStorageId_GameCard && !nca_ctx->ncm_storage) || (nca_ctx->storage_id == NcmStorageId_GameCard && !nca_ctx->gamecard_offset) || \ content_offset >= nca_ctx->content_size || (content_offset + read_size) > nca_ctx->content_size) { LOGFILE("Invalid NCA header parameters!"); goto end; } /* Optimization for reads that are aligned to the AES-CTR sector size. */ if (!(content_offset % AES_BLOCK_SIZE) && !(read_size % AES_BLOCK_SIZE)) { /* Read data. */ if (!ncaReadContentFile(nca_ctx, out, read_size, content_offset)) { LOGFILE("Failed to read 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned).", read_size, content_offset, nca_ctx->content_id_str, ctx->section_num); goto end; } /* Decrypt data */ ncaUpdateAesCtrExIv(ctx->ctr, ctr_val, content_offset); aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr); aes128CtrCrypt(&(ctx->ctr_ctx), out, out, read_size); ret = true; goto end; } /* Calculate offsets and block sizes. */ block_start_offset = ALIGN_DOWN(content_offset, AES_BLOCK_SIZE); block_end_offset = ALIGN_UP(content_offset + read_size, AES_BLOCK_SIZE); block_size = (block_end_offset - block_start_offset); data_start_offset = (content_offset - block_start_offset); chunk_size = (block_size > NCA_CRYPTO_BUFFER_SIZE ? NCA_CRYPTO_BUFFER_SIZE : block_size); out_chunk_size = (block_size > NCA_CRYPTO_BUFFER_SIZE ? (NCA_CRYPTO_BUFFER_SIZE - data_start_offset) : read_size); /* Read data. */ if (!ncaReadContentFile(nca_ctx, g_ncaCryptoBuffer, chunk_size, block_start_offset)) { LOGFILE("Failed to read 0x%lX bytes encrypted data block at offset 0x%lX from NCA \"%s\" FS section #%u! (unaligned).", chunk_size, block_start_offset, nca_ctx->content_id_str, \ ctx->section_num); goto end; } /* Decrypt data. */ ncaUpdateAesCtrExIv(ctx->ctr, ctr_val, block_start_offset); aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr); aes128CtrCrypt(&(ctx->ctr_ctx), g_ncaCryptoBuffer, g_ncaCryptoBuffer, chunk_size); /* Copy decrypted data. */ memcpy(out, g_ncaCryptoBuffer + data_start_offset, out_chunk_size); ret = (block_size > NCA_CRYPTO_BUFFER_SIZE ? _ncaReadAesCtrExStorageFromBktrSection(ctx, (u8*)out + out_chunk_size, read_size - out_chunk_size, offset + out_chunk_size, ctr_val, false) : true); end: if (lock) mutexUnlock(&g_ncaCryptoBufferMutex); return ret; } /* In this function, the term "layer" is used as a generic way to refer to both HierarchicalSha256 hash regions and HierarchicalIntegrity verification levels. */ static bool ncaGenerateHashDataPatch(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, void *out, bool is_integrity_patch) { mutexLock(&g_ncaCryptoBufferMutex); NcaContext *nca_ctx = NULL; NcaHierarchicalSha256Patch *hierarchical_sha256_patch = (!is_integrity_patch ? ((NcaHierarchicalSha256Patch*)out) : NULL); NcaHierarchicalIntegrityPatch *hierarchical_integrity_patch = (is_integrity_patch ? ((NcaHierarchicalIntegrityPatch*)out) : NULL); u8 *cur_data = NULL; u64 cur_data_offset = data_offset; u64 cur_data_size = data_size; u32 layer_count = 0; u8 *parent_layer_block = NULL, *cur_layer_block = NULL; u64 last_layer_size = 0; bool success = false; if (!ctx || !ctx->enabled || !(nca_ctx = (NcaContext*)ctx->nca_ctx) || (!is_integrity_patch && (ctx->header.hash_type != NcaHashType_HierarchicalSha256 || \ !ctx->header.hash_data.hierarchical_sha256_data.hash_block_size || !(layer_count = ctx->header.hash_data.hierarchical_sha256_data.hash_region_count) || \ layer_count > NCA_HIERARCHICAL_SHA256_MAX_REGION_COUNT || !(last_layer_size = ctx->header.hash_data.hierarchical_sha256_data.hash_region[layer_count - 1].size))) || \ (is_integrity_patch && (ctx->header.hash_type != NcaHashType_HierarchicalIntegrity || \ !(layer_count = (ctx->header.hash_data.integrity_meta_info.info_level_hash.max_level_count - 1)) || layer_count != NCA_IVFC_LEVEL_COUNT || \ !(last_layer_size = ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[NCA_IVFC_LEVEL_COUNT - 1].size))) || !data || !data_size || \ data_offset >= last_layer_size || (data_offset + data_size) > last_layer_size || !out) { LOGFILE("Invalid parameters!"); goto end; } /* Clear output patch. */ memset(out, 0, !is_integrity_patch ? sizeof(NcaHierarchicalSha256Patch) : sizeof(NcaHierarchicalIntegrityPatch)); /* Process each layer. */ for(u32 i = layer_count; i > 0; i--) { u64 hash_block_size = 0; u64 cur_layer_offset = 0, cur_layer_size = 0; u64 cur_layer_read_start_offset = 0, cur_layer_read_end_offset = 0, cur_layer_read_size = 0, cur_layer_read_patch_offset = 0; u64 parent_layer_offset = 0, parent_layer_size = 0; u64 parent_layer_read_start_offset = 0, parent_layer_read_end_offset = 0, parent_layer_read_size = 0; NcaHashDataPatch *cur_layer_patch = NULL; /* Retrieve current layer properties. */ hash_block_size = (!is_integrity_patch ? ctx->header.hash_data.hierarchical_sha256_data.hash_block_size : \ NCA_IVFC_BLOCK_SIZE(ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[i - 1].block_order)); cur_layer_offset = (!is_integrity_patch ? ctx->header.hash_data.hierarchical_sha256_data.hash_region[i - 1].offset : \ ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[i - 1].offset); cur_layer_size = (!is_integrity_patch ? ctx->header.hash_data.hierarchical_sha256_data.hash_region[i - 1].size : \ ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[i - 1].size); /* Retrieve parent layer properties. */ /* If this is the master layer, then no properties are retrieved, since it is verified by the master hash from the HashData block in the NCA FS section header. */ if (i > 1) { parent_layer_offset = (!is_integrity_patch ? ctx->header.hash_data.hierarchical_sha256_data.hash_region[i - 2].offset : \ ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[i - 2].offset); parent_layer_size = (!is_integrity_patch ? ctx->header.hash_data.hierarchical_sha256_data.hash_region[i - 2].size : \ ctx->header.hash_data.integrity_meta_info.info_level_hash.level_information[i - 2].size); } /* Validate layer properties. */ if (hash_block_size <= 1 || cur_layer_offset >= ctx->section_size || !cur_layer_size || (cur_layer_offset + cur_layer_size) > ctx->section_size || \ (i > 1 && (parent_layer_offset >= ctx->section_size || !parent_layer_size || (parent_layer_offset + parent_layer_size) > ctx->section_size))) { LOGFILE("Invalid hierarchical parent/child layer!"); goto end; } /* Retrieve pointer to the current layer patch. */ cur_layer_patch = (!is_integrity_patch ? &(hierarchical_sha256_patch->hash_region_patch[i - 1]) : &(hierarchical_integrity_patch->hash_level_patch[i - 1])); /* Calculate required offsets and sizes. */ if (i > 1) { /* HierarchicalSha256 hash region with index 1 through 4, or HierarchicalIntegrity verification level with index 1 through 5. */ parent_layer_read_start_offset = ((cur_data_offset / hash_block_size) * SHA256_HASH_SIZE); parent_layer_read_end_offset = (((cur_data_offset + cur_data_size) / hash_block_size) * SHA256_HASH_SIZE); parent_layer_read_size = (parent_layer_read_end_offset != parent_layer_read_start_offset ? (parent_layer_read_end_offset - parent_layer_read_start_offset) : SHA256_HASH_SIZE); cur_layer_read_start_offset = (cur_layer_offset + ALIGN_DOWN(cur_data_offset, hash_block_size)); cur_layer_read_end_offset = (cur_layer_offset + ALIGN_UP(cur_data_offset + cur_data_size, hash_block_size)); cur_layer_read_size = (cur_layer_read_end_offset - cur_layer_read_start_offset); } else { /* HierarchicalSha256 master hash region, or HierarchicalIntegrity master verification level. Both with index 0. */ /* The master hash is calculated over the whole layer and saved to the HashData block from the NCA FS section header. */ cur_layer_read_start_offset = cur_layer_offset; cur_layer_read_end_offset = (cur_layer_offset + cur_layer_size); cur_layer_read_size = cur_layer_size; } cur_layer_read_patch_offset = (cur_data_offset - ALIGN_DOWN(cur_data_offset, hash_block_size)); /* Allocate memory for our current layer block. */ cur_layer_block = calloc(cur_layer_read_size, sizeof(u8)); if (!cur_layer_block) { LOGFILE("Unable to allocate 0x%lX bytes for hierarchical layer #%u data block! (current).", cur_layer_read_size, i - 1); goto end; } /* Adjust current layer read size to avoid read errors (if needed). */ if (cur_layer_read_end_offset > (cur_layer_offset + cur_layer_size)) { cur_layer_read_end_offset = (cur_layer_offset + cur_layer_size); cur_layer_read_size = (cur_layer_read_end_offset - cur_layer_read_start_offset); } /* Read current layer block. */ if (!_ncaReadFsSection(ctx, cur_layer_block, cur_layer_read_size, cur_layer_read_start_offset, false)) { LOGFILE("Failed to read 0x%lX bytes long hierarchical layer #%u data block from offset 0x%lX! (current).", cur_layer_read_size, i - 1, cur_layer_read_start_offset); goto end; } /* Replace current layer block data. */ memcpy(cur_layer_block + cur_layer_read_patch_offset, (i == layer_count ? data : cur_data), cur_data_size); /* Recalculate hashes. */ if (i > 1) { /* Allocate memory for our parent layer block. */ parent_layer_block = calloc(parent_layer_read_size, sizeof(u8)); if (!parent_layer_block) { LOGFILE("Unable to allocate 0x%lX bytes for hierarchical layer #%u data block! (parent).", parent_layer_read_size, i - 2); goto end; } /* Read parent layer block. */ if (!_ncaReadFsSection(ctx, parent_layer_block, parent_layer_read_size, parent_layer_offset + parent_layer_read_start_offset, false)) { LOGFILE("Failed to read 0x%lX bytes long hierarchical layer #%u data block from offset 0x%lX! (parent).", parent_layer_read_size, i - 2, parent_layer_read_start_offset); goto end; } /* HierarchicalSha256: size is truncated for blocks smaller than the hash block size. */ /* HierarchicalIntegrity: size *isn't* truncated for blocks smaller than the hash block size, so we just keep using the same hash block size throughout the loop. */ /* For these specific cases, the rest of the block should be filled with zeroes (already taken care of by using calloc()). */ for(u64 j = 0, k = 0; j < cur_layer_read_size; j += hash_block_size, k++) { if (!is_integrity_patch && hash_block_size > (cur_layer_read_size - j)) hash_block_size = (cur_layer_read_size - j); sha256CalculateHash(parent_layer_block + (k * SHA256_HASH_SIZE), cur_layer_block + j, hash_block_size); } } else { /* Recalculate master hash from the HashData area. */ u8 *master_hash = (!is_integrity_patch ? ctx->header.hash_data.hierarchical_sha256_data.master_hash : ctx->header.hash_data.integrity_meta_info.master_hash); sha256CalculateHash(master_hash, cur_layer_block, cur_layer_read_size); } /* Reencrypt current layer block. */ cur_layer_patch->data = _ncaGenerateEncryptedFsSectionBlock(ctx, cur_layer_block + cur_layer_read_patch_offset, cur_data_size, cur_layer_offset + cur_data_offset, \ &(cur_layer_patch->size), &(cur_layer_patch->offset), false); if (!cur_layer_patch->data) { LOGFILE("Failed to generate encrypted 0x%lX bytes long hierarchical layer #%u data block!", cur_data_size, i - 1); goto end; } /* Free current layer block. */ free(cur_layer_block); cur_layer_block = NULL; if (i > 1) { /* Free previous layer block (if needed). */ if (cur_data) free(cur_data); /* Prepare data for the next layer. */ cur_data = parent_layer_block; cur_data_offset = parent_layer_read_start_offset; cur_data_size = parent_layer_read_size; parent_layer_block = NULL; } } /* Recalculate FS header hash. */ sha256CalculateHash(nca_ctx->header.fs_header_hash[ctx->section_num].hash, &(ctx->header), sizeof(NcaFsHeader)); /* Copy content ID. */ memcpy(!is_integrity_patch ? &(hierarchical_sha256_patch->content_id) : &(hierarchical_integrity_patch->content_id), &(nca_ctx->content_id), sizeof(NcmContentId)); /* Set hash region count (if needed). */ if (!is_integrity_patch) hierarchical_sha256_patch->hash_region_count = layer_count; success = true; end: if (cur_layer_block) free(cur_layer_block); if (parent_layer_block) free(parent_layer_block); if (!success && out) { if (!is_integrity_patch) { ncaFreeHierarchicalSha256Patch(hierarchical_sha256_patch); } else { ncaFreeHierarchicalIntegrityPatch(hierarchical_integrity_patch); } } mutexUnlock(&g_ncaCryptoBufferMutex); return success; } static void ncaWriteHashDataPatchToMemoryBuffer(NcaContext *ctx, NcaHashDataPatch *layer_patch, void *buf, u64 buf_size, u64 buf_offset) { /* Return right away if we're dealing with invalid parameters, or if the buffer data is not part of the range covered by the patch (last two conditions). */ if (!ctx || !layer_patch || layer_patch->offset < sizeof(NcaHeader) || layer_patch->offset >= ctx->content_size || !layer_patch->size || !layer_patch->data || \ (layer_patch->offset + layer_patch->size) > ctx->content_size || !buf || (buf_offset + buf_size) <= layer_patch->offset || (layer_patch->offset + layer_patch->size) <= buf_offset) return; /* Overwrite buffer data using patch data. */ u64 patch_block_offset = (buf_offset > layer_patch->offset ? (buf_offset - layer_patch->offset) : 0); u64 patch_block_size = (layer_patch->size - patch_block_offset); u64 buf_block_offset = (buf_offset > layer_patch->offset ? 0 : (layer_patch->offset - buf_offset)); u64 buf_block_size = ((buf_size - buf_block_offset) > patch_block_size ? patch_block_size : (buf_size - buf_block_offset)); memcpy((u8*)buf + buf_block_offset, layer_patch->data + patch_block_offset, buf_block_size); LOGFILE("Overwrote 0x%lX bytes block at offset 0x%lX from raw NCA \"%s\" buffer (size 0x%lX, NCA offset 0x%lX).", buf_block_size, buf_block_offset, ctx->content_id_str, buf_size, buf_offset); } static void *_ncaGenerateEncryptedFsSectionBlock(NcaFsSectionContext *ctx, const void *data, u64 data_size, u64 data_offset, u64 *out_block_size, u64 *out_block_offset, bool lock) { if (lock) mutexLock(&g_ncaCryptoBufferMutex); u8 *out = NULL; bool success = false; if (!g_ncaCryptoBuffer || !ctx || !ctx->enabled || !ctx->nca_ctx || ctx->section_num >= NCA_FS_HEADER_COUNT || ctx->section_offset < sizeof(NcaHeader) || \ ctx->section_type >= NcaFsSectionType_Invalid || ctx->encryption_type == NcaEncryptionType_Auto || ctx->encryption_type >= NcaEncryptionType_AesCtrEx || !data || !data_size || \ data_offset >= ctx->section_size || (data_offset + data_size) > ctx->section_size || !out_block_size || !out_block_offset) { LOGFILE("Invalid NCA FS section header parameters!"); goto end; } size_t crypt_res = 0; u64 sector_num = 0; NcaContext *nca_ctx = (NcaContext*)ctx->nca_ctx; u64 content_offset = (ctx->section_offset + data_offset); u64 block_start_offset = 0, block_end_offset = 0, block_size = 0; u64 plain_chunk_offset = 0; if (!strlen(nca_ctx->content_id_str) || (nca_ctx->storage_id != NcmStorageId_GameCard && !nca_ctx->ncm_storage) || (nca_ctx->storage_id == NcmStorageId_GameCard && !nca_ctx->gamecard_offset) || \ (nca_ctx->format_version != NcaVersion_Nca0 && nca_ctx->format_version != NcaVersion_Nca2 && nca_ctx->format_version != NcaVersion_Nca3) || content_offset >= nca_ctx->content_size || \ (content_offset + data_size) > nca_ctx->content_size) { LOGFILE("Invalid NCA header parameters!"); goto end; } /* Optimization for blocks from plaintext FS sections or blocks that are aligned to the AES-CTR / AES-XTS sector size. */ if (ctx->encryption_type == NcaEncryptionType_None || \ (ctx->encryption_type == NcaEncryptionType_AesXts && !(content_offset % NCA_AES_XTS_SECTOR_SIZE) && !(data_size % NCA_AES_XTS_SECTOR_SIZE)) || \ (ctx->encryption_type == NcaEncryptionType_AesCtr && !(content_offset % AES_BLOCK_SIZE) && !(data_size % AES_BLOCK_SIZE))) { /* Allocate memory. */ out = malloc(data_size); if (!out) { LOGFILE("Unable to allocate 0x%lX bytes buffer! (aligned).", data_size); goto end; } /* Copy data. */ memcpy(out, data, data_size); /* Encrypt data. */ if (ctx->encryption_type == NcaEncryptionType_AesXts) { sector_num = ((nca_ctx->format_version != NcaVersion_Nca0 ? data_offset : (content_offset - sizeof(NcaHeader))) / NCA_AES_XTS_SECTOR_SIZE); crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_encrypt_ctx), out, out, data_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, true); if (crypt_res != data_size) { LOGFILE("Failed to AES-XTS encrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned).", data_size, content_offset, nca_ctx->content_id_str, ctx->section_num); goto end; } } else if (ctx->encryption_type == NcaEncryptionType_AesCtr) { ncaUpdateAesCtrIv(ctx->ctr, content_offset); aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr); aes128CtrCrypt(&(ctx->ctr_ctx), out, out, data_size); } *out_block_size = data_size; *out_block_offset = content_offset; success = true; goto end; } /* Calculate block offsets and size. */ block_start_offset = ALIGN_DOWN(data_offset, ctx->encryption_type == NcaEncryptionType_AesXts ? NCA_AES_XTS_SECTOR_SIZE : AES_BLOCK_SIZE); block_end_offset = ALIGN_UP(data_offset + data_size, ctx->encryption_type == NcaEncryptionType_AesXts ? NCA_AES_XTS_SECTOR_SIZE : AES_BLOCK_SIZE); block_size = (block_end_offset - block_start_offset); plain_chunk_offset = (data_offset - block_start_offset); content_offset = (ctx->section_offset + block_start_offset); /* Allocate memory. */ out = malloc(block_size); if (!out) { LOGFILE("Unable to allocate 0x%lX bytes buffer! (unaligned).", block_size); goto end; } /* Read decrypted data using aligned offset and size. */ if (!_ncaReadFsSection(ctx, out, block_size, block_start_offset, false)) { LOGFILE("Failed to read decrypted NCA \"%s\" FS section #%u data block!", nca_ctx->content_id_str, ctx->section_num); goto end; } /* Replace plaintext data. */ memcpy(out + plain_chunk_offset, data, data_size); /* Reencrypt data. */ if (ctx->encryption_type == NcaEncryptionType_AesXts) { sector_num = ((nca_ctx->format_version != NcaVersion_Nca0 ? block_start_offset : (content_offset - sizeof(NcaHeader))) / NCA_AES_XTS_SECTOR_SIZE); crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_encrypt_ctx), out, out, block_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, true); if (crypt_res != block_size) { LOGFILE("Failed to AES-XTS encrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u! (aligned).", block_size, content_offset, nca_ctx->content_id_str, ctx->section_num); goto end; } } else if (ctx->encryption_type == NcaEncryptionType_AesCtr) { ncaUpdateAesCtrIv(ctx->ctr, content_offset); aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr); aes128CtrCrypt(&(ctx->ctr_ctx), out, out, block_size); } *out_block_size = block_size; *out_block_offset = content_offset; success = true; end: if (!success && out) { free(out); out = NULL; } if (lock) mutexUnlock(&g_ncaCryptoBufferMutex); return out; }