NCA read (almost) done.

Missing BKTR stuff.
This commit is contained in:
Pablo Curiel 2020-04-21 06:23:33 -04:00
parent ccf36f4963
commit 0e5683b880
6 changed files with 416 additions and 228 deletions

View file

@ -779,7 +779,7 @@ static bool gamecardReadStorageArea(void *out, u64 read_size, u64 offset, bool l
if (!(base_offset % GAMECARD_MEDIA_UNIT_SIZE) && !(read_size % GAMECARD_MEDIA_UNIT_SIZE)) if (!(base_offset % GAMECARD_MEDIA_UNIT_SIZE) && !(read_size % GAMECARD_MEDIA_UNIT_SIZE))
{ {
/* Optimization for reads that are already aligned to GAMECARD_MEDIA_UNIT_SIZE bytes */ /* Optimization for reads that are already aligned to a GAMECARD_MEDIA_UNIT_SIZE boundary */
rc = fsStorageRead(&g_gameCardStorage, base_offset, out_u8, read_size); rc = fsStorageRead(&g_gameCardStorage, base_offset, out_u8, read_size);
if (R_FAILED(rc)) if (R_FAILED(rc))
{ {
@ -790,12 +790,13 @@ static bool gamecardReadStorageArea(void *out, u64 read_size, u64 offset, bool l
success = true; success = true;
} else { } else {
/* Fix offset and/or size to avoid unaligned reads */ /* Fix offset and/or size to avoid unaligned reads */
u64 block_start_offset = (base_offset - (base_offset % GAMECARD_MEDIA_UNIT_SIZE)); u64 block_start_offset = ROUND_DOWN(base_offset, GAMECARD_MEDIA_UNIT_SIZE);
u64 block_end_offset = ROUND_UP(base_offset + read_size, GAMECARD_MEDIA_UNIT_SIZE); u64 block_end_offset = ROUND_UP(base_offset + read_size, GAMECARD_MEDIA_UNIT_SIZE);
u64 block_size = (block_end_offset - block_start_offset); u64 block_size = (block_end_offset - block_start_offset);
u64 data_start_offset = (base_offset - block_start_offset);
u64 chunk_size = (block_size > GAMECARD_READ_BUFFER_SIZE ? GAMECARD_READ_BUFFER_SIZE : block_size); u64 chunk_size = (block_size > GAMECARD_READ_BUFFER_SIZE ? GAMECARD_READ_BUFFER_SIZE : block_size);
u64 out_chunk_size = (block_size > GAMECARD_READ_BUFFER_SIZE ? (GAMECARD_READ_BUFFER_SIZE - (base_offset - block_start_offset)) : read_size); u64 out_chunk_size = (block_size > GAMECARD_READ_BUFFER_SIZE ? (GAMECARD_READ_BUFFER_SIZE - data_start_offset) : read_size);
rc = fsStorageRead(&g_gameCardStorage, block_start_offset, g_gameCardReadBuf, chunk_size); rc = fsStorageRead(&g_gameCardStorage, block_start_offset, g_gameCardReadBuf, chunk_size);
if (R_FAILED(rc)) if (R_FAILED(rc))
@ -804,7 +805,7 @@ static bool gamecardReadStorageArea(void *out, u64 read_size, u64 offset, bool l
goto out; goto out;
} }
memcpy(out_u8, g_gameCardReadBuf + (base_offset - block_start_offset), out_chunk_size); memcpy(out_u8, g_gameCardReadBuf + data_start_offset, out_chunk_size);
success = (block_size > GAMECARD_READ_BUFFER_SIZE ? gamecardReadStorageArea(out_u8 + out_chunk_size, read_size - out_chunk_size, base_offset + out_chunk_size, false) : true); success = (block_size > GAMECARD_READ_BUFFER_SIZE ? gamecardReadStorageArea(out_u8 + out_chunk_size, read_size - out_chunk_size, base_offset + out_chunk_size, false) : true);
} }

View file

@ -165,8 +165,6 @@ int main(int argc, char *argv[])
} else { } else {
printf("read failed\n"); printf("read failed\n");
} }
free(buf);
} else { } else {
printf("buf failed\n"); printf("buf failed\n");
} }
@ -271,22 +269,27 @@ int main(int argc, char *argv[])
printf("ncm open storage succeeded\n"); printf("ncm open storage succeeded\n");
consoleUpdate(NULL); consoleUpdate(NULL);
NcmContentId nca_id = { // Untitled Goose Game
.c = { 0x8E, 0xF9, 0x20, 0xD4, 0x5E, 0xE1, 0x9E, 0xD1, 0xD2, 0x04, 0xC4, 0xC8, 0x22, 0x50, 0x79, 0xE8 } // Untitled Goose Game NcmPackagedContentInfo content_info = {
.hash = {
0x8E, 0xF9, 0x20, 0xD4, 0x5E, 0xE1, 0x9E, 0xD1, 0xD2, 0x04, 0xC4, 0xC8, 0x22, 0x50, 0x79, 0xE8,
0x8E, 0xF9, 0x20, 0xD4, 0x5E, 0xE1, 0x9E, 0xD1, 0xD2, 0x04, 0xC4, 0xC8, 0x22, 0x50, 0x79, 0xE8
},
.info = {
.content_id = {
.c = { 0x8E, 0xF9, 0x20, 0xD4, 0x5E, 0xE1, 0x9E, 0xD1, 0xD2, 0x04, 0xC4, 0xC8, 0x22, 0x50, 0x79, 0xE8 }
},
.size = {
0x00, 0x40, 0xAD, 0x31, 0x00, 0x00
},
.content_type = NcmContentType_Program,
.id_offset = 0
}
}; };
u8 nca_hash[SHA256_HASH_SIZE] = { if (ncaInitializeContext(nca_ctx, &tik, NcmStorageId_SdCard, &ncm_storage, 0, &content_info))
0x8E, 0xF9, 0x20, 0xD4, 0x5E, 0xE1, 0x9E, 0xD1, 0xD2, 0x04, 0xC4, 0xC8, 0x22, 0x50, 0x79, 0xE8,
0x8E, 0xF9, 0x20, 0xD4, 0x5E, 0xE1, 0x9E, 0xD1, 0xD2, 0x04, 0xC4, 0xC8, 0x22, 0x50, 0x79, 0xE8
};
u8 nca_size[0x6] = {
0x00, 0x40, 0xAD, 0x31, 0x00, 0x00
};
if (ncaProcessContent(nca_ctx, &tik, NcmStorageId_SdCard, &ncm_storage, &nca_id, nca_hash, NcmContentType_Program, nca_size, 0, 0))
{ {
printf("nca process succeeded\n"); printf("nca initialize ctx succeeded\n");
consoleUpdate(NULL); consoleUpdate(NULL);
tmp_file = fopen("sdmc:/nca_ctx.bin", "wb"); tmp_file = fopen("sdmc:/nca_ctx.bin", "wb");
@ -299,8 +302,43 @@ int main(int argc, char *argv[])
} else { } else {
printf("nca ctx not saved\n"); printf("nca ctx not saved\n");
} }
consoleUpdate(NULL);
tmp_file = fopen("sdmc:/section0.bin", "wb");
if (tmp_file)
{
printf("nca section0 created\n");
consoleUpdate(NULL);
u64 curpos = 0;
u64 blksize = (u64)0x400000;
u64 total = nca_ctx->fs_contexts[0].section_size;
for(u64 curpos = 0; curpos < total; curpos += blksize)
{
if (blksize > (total - curpos)) blksize = (total - curpos);
if (!ncaReadFsSection(&(nca_ctx->fs_contexts[0]), buf, blksize, curpos))
{
printf("nca read section failed\n");
break;
}
fwrite(buf, 1, blksize, tmp_file);
}
if (curpos >= total) printf("nca read section success\n");
consoleUpdate(NULL);
fclose(tmp_file);
tmp_file = NULL;
} else {
printf("nca section0 not created\n");
}
} else { } else {
printf("nca process failed\n"); printf("nca initialize ctx failed\n");
} }
consoleUpdate(NULL); consoleUpdate(NULL);
@ -325,6 +363,7 @@ int main(int argc, char *argv[])
} }
if (buf) free(buf);
consoleExit(NULL); consoleExit(NULL);

View file

@ -24,8 +24,12 @@
#include "gamecard.h" #include "gamecard.h"
#include "utils.h" #include "utils.h"
#define NCA_CRYPTO_BUFFER_SIZE 0x800000 /* 8 MiB */
/* Global variables. */ /* Global variables. */
static u8 *g_ncaCryptoBuffer = NULL;
static const u8 g_nca0KeyAreaHash[SHA256_HASH_SIZE] = { static const u8 g_nca0KeyAreaHash[SHA256_HASH_SIZE] = {
0x9A, 0xBB, 0xD2, 0x11, 0x86, 0x00, 0x21, 0x9D, 0x7A, 0xDC, 0x5B, 0x43, 0x95, 0xF8, 0x4E, 0xFD, 0x9A, 0xBB, 0xD2, 0x11, 0x86, 0x00, 0x21, 0x9D, 0x7A, 0xDC, 0x5B, 0x43, 0x95, 0xF8, 0x4E, 0xFD,
0xFF, 0x6B, 0x25, 0xEF, 0x9F, 0x96, 0x85, 0x28, 0x18, 0x9E, 0x76, 0xB0, 0x92, 0xF0, 0x6A, 0xCB 0xFF, 0x6B, 0x25, 0xEF, 0x9F, 0x96, 0x85, 0x28, 0x18, 0x9E, 0x76, 0xB0, 0x92, 0xF0, 0x6A, 0xCB
@ -35,10 +39,31 @@ static const u8 g_nca0KeyAreaHash[SHA256_HASH_SIZE] = {
static bool ncaCheckIfVersion0KeyAreaIsEncrypted(NcaContext *ctx); static bool ncaCheckIfVersion0KeyAreaIsEncrypted(NcaContext *ctx);
static inline u8 ncaGetKeyGenerationValue(NcaContext *ctx);
static inline bool ncaCheckRightsIdAvailability(NcaContext *ctx);
static void ncaInitializeAesCtrIv(u8 *out, const u8 *ctr, u64 offset); static void ncaInitializeAesCtrIv(u8 *out, const u8 *ctr, u64 offset);
static void ncaUpdateAesCtrIv(u8 *ctr, u64 offset); static void ncaUpdateAesCtrIv(u8 *ctr, u64 offset);
static void ncaUpdateAesCtrExIv(u8 *ctr, u32 ctr_val, u64 offset); static void ncaUpdateAesCtrExIv(u8 *ctr, u32 ctr_val, u64 offset);
bool ncaAllocateCryptoBuffer(void)
{
if (g_ncaCryptoBuffer) return true;
g_ncaCryptoBuffer = malloc(NCA_CRYPTO_BUFFER_SIZE);
return (g_ncaCryptoBuffer != NULL);
}
void ncaFreeCryptoBuffer(void)
{
if (g_ncaCryptoBuffer)
{
free(g_ncaCryptoBuffer);
g_ncaCryptoBuffer = NULL;
}
}
size_t aes128XtsNintendoCrypt(Aes128XtsContext *ctx, void *dst, const void *src, size_t size, u64 sector, size_t sector_size, bool encrypt) size_t aes128XtsNintendoCrypt(Aes128XtsContext *ctx, void *dst, const void *src, size_t size, u64 sector, size_t sector_size, bool encrypt)
{ {
if (!ctx || !dst || !src || !size || !sector_size || (size % sector_size) != 0) if (!ctx || !dst || !src || !size || !sector_size || (size % sector_size) != 0)
@ -57,49 +82,13 @@ size_t aes128XtsNintendoCrypt(Aes128XtsContext *ctx, void *dst, const void *src,
{ {
/* We have to force a sector reset on each new sector to actually enable Nintendo AES-XTS cipher tweak */ /* We have to force a sector reset on each new sector to actually enable Nintendo AES-XTS cipher tweak */
aes128XtsContextResetSector(ctx, cur_sector, true); aes128XtsContextResetSector(ctx, cur_sector, true);
crypt_res = (encrypt ? aes128XtsEncrypt(ctx, dst_u8 + i, src_u8 + i, sector_size) : aes128XtsDecrypt(ctx, dst_u8 + i, src_u8 + i, sector_size));
if (encrypt)
{
crypt_res = aes128XtsEncrypt(ctx, dst_u8 + i, src_u8 + i, sector_size);
} else {
crypt_res = aes128XtsDecrypt(ctx, dst_u8 + i, src_u8 + i, sector_size);
}
if (crypt_res != sector_size) break; if (crypt_res != sector_size) break;
} }
return i; return i;
} }
bool ncaReadContent(NcaContext *ctx, void *out, u64 read_size, u64 offset)
{
if (!ctx || (ctx->storage_id != NcmStorageId_GameCard && !ctx->ncm_storage) || (ctx->storage_id == NcmStorageId_GameCard && !ctx->gamecard_offset) || !out || !read_size || \
offset >= ctx->size || (offset + read_size) > ctx->size)
{
LOGFILE("Invalid parameters!");
return false;
}
Result rc = 0;
bool ret = false;
if (ctx->storage_id != NcmStorageId_GameCard)
{
/* Retrieve NCA data normally */
/* This strips NAX0 crypto from SD card NCAs (not used on eMMC NCAs) */
rc = ncmContentStorageReadContentIdFile(ctx->ncm_storage, out, read_size, &(ctx->id), offset);
ret = R_SUCCEEDED(rc);
if (!ret) LOGFILE("Failed to read 0x%lX bytes block at offset 0x%lX from NCA \"%s\"! (0x%08X) (ncm)", read_size, offset, ctx->id_str, rc);
} else {
/* Retrieve NCA data using raw gamecard reads */
/* Fixes NCA read issues with gamecards under HOS < 4.0.0 when using ncmContentStorageReadContentIdFile() */
ret = gamecardRead(out, read_size, ctx->gamecard_offset + offset);
if (!ret) LOGFILE("Failed to read 0x%lX bytes block at offset 0x%lX from NCA \"%s\"! (gamecard)", read_size, offset, ctx->id_str);
}
return ret;
}
bool ncaDecryptKeyArea(NcaContext *ctx) bool ncaDecryptKeyArea(NcaContext *ctx)
{ {
if (!ctx) if (!ctx)
@ -184,7 +173,7 @@ bool ncaEncryptKeyArea(NcaContext *ctx)
bool ncaDecryptHeader(NcaContext *ctx) bool ncaDecryptHeader(NcaContext *ctx)
{ {
if (!ctx) if (!ctx || !strlen(ctx->content_id_str))
{ {
LOGFILE("Invalid NCA context!"); LOGFILE("Invalid NCA context!");
return false; return false;
@ -194,32 +183,30 @@ bool ncaDecryptHeader(NcaContext *ctx)
size_t crypt_res = 0; size_t crypt_res = 0;
u64 fs_header_offset = 0; u64 fs_header_offset = 0;
const u8 *header_key = NULL; const u8 *header_key = NULL;
u8 tmp_hdr[NCA_HEADER_LENGTH] = {0};
Aes128XtsContext hdr_aes_ctx = {0}, nca0_fs_header_ctx = {0}; Aes128XtsContext hdr_aes_ctx = {0}, nca0_fs_header_ctx = {0};
header_key = keysGetNcaHeaderKey(); header_key = keysGetNcaHeaderKey();
aes128XtsContextCreate(&hdr_aes_ctx, header_key, header_key + 0x10, false); aes128XtsContextCreate(&hdr_aes_ctx, header_key, header_key + 0x10, false);
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, tmp_hdr, &(ctx->header), NCA_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, false); crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header), &(ctx->header), NCA_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, false);
if (crypt_res != NCA_HEADER_LENGTH) if (crypt_res != NCA_HEADER_LENGTH)
{ {
LOGFILE("Invalid output length for decrypted NCA header! (0x%X != 0x%lX)", NCA_HEADER_LENGTH, crypt_res); LOGFILE("Error decrypting partial NCA \"%s\" header!", ctx->content_id_str);
return false; return false;
} }
memcpy(&magic, tmp_hdr + 0x200, sizeof(u32)); magic = __builtin_bswap32(ctx->header.magic);
magic = __builtin_bswap32(magic);
switch(magic) switch(magic)
{ {
case NCA_NCA3_MAGIC: case NCA_NCA3_MAGIC:
ctx->format_version = NcaVersion_Nca3; ctx->format_version = NcaVersion_Nca3;
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header), &(ctx->header), NCA_FULL_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, false); crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, ctx->header.fs_headers, ctx->header.fs_headers, NCA_FULL_HEADER_LENGTH - NCA_HEADER_LENGTH, 2, NCA_AES_XTS_SECTOR_SIZE, false);
if (crypt_res != NCA_FULL_HEADER_LENGTH) if (crypt_res != (NCA_FULL_HEADER_LENGTH - NCA_HEADER_LENGTH))
{ {
LOGFILE("Error decrypting full NCA3 header!"); LOGFILE("Error decrypting NCA3 \"%s\" FS section headers!", ctx->content_id_str);
return false; return false;
} }
@ -234,7 +221,7 @@ bool ncaDecryptHeader(NcaContext *ctx)
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header.fs_headers[i]), &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, false); crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header.fs_headers[i]), &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, false);
if (crypt_res != NCA_FS_HEADER_LENGTH) if (crypt_res != NCA_FS_HEADER_LENGTH)
{ {
LOGFILE("Error decrypting NCA2 FS section header #%u!", i); LOGFILE("Error decrypting NCA2 \"%s\" FS section header #%u!", ctx->content_id_str, i);
return false; return false;
} }
} }
@ -246,7 +233,7 @@ bool ncaDecryptHeader(NcaContext *ctx)
/* We first need to decrypt the key area from the NCA0 header in order to access its FS section headers */ /* We first need to decrypt the key area from the NCA0 header in order to access its FS section headers */
if (!ncaDecryptKeyArea(ctx)) if (!ncaDecryptKeyArea(ctx))
{ {
LOGFILE("Error decrypting NCA0 key area!"); LOGFILE("Error decrypting NCA0 \"%s\" key area!", ctx->content_id_str);
return false; return false;
} }
@ -260,22 +247,22 @@ bool ncaDecryptHeader(NcaContext *ctx)
fs_header_offset = NCA_FS_ENTRY_BLOCK_OFFSET(ctx->header.fs_entries[i].start_block_offset); fs_header_offset = NCA_FS_ENTRY_BLOCK_OFFSET(ctx->header.fs_entries[i].start_block_offset);
if (!ncaReadContent(ctx, &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, fs_header_offset)) if (!ncaReadContent(ctx, &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, fs_header_offset))
{ {
LOGFILE("Failed to read NCA0 FS section header #%u at offset 0x%lX!", i, fs_header_offset); LOGFILE("Failed to read NCA0 \"%s\" FS section header #%u at offset 0x%lX!", ctx->content_id_str, i, fs_header_offset);
return false; return false;
} }
crypt_res = aes128XtsNintendoCrypt(&nca0_fs_header_ctx, &(ctx->header.fs_headers[i]), &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, (fs_header_offset - 0x400) >> 9, \ crypt_res = aes128XtsNintendoCrypt(&nca0_fs_header_ctx, &(ctx->header.fs_headers[i]), &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, \
NCA_AES_XTS_SECTOR_SIZE, false); NCA_NCA0_FS_HEADER_AES_XTS_SECTOR(fs_header_offset), NCA_AES_XTS_SECTOR_SIZE, false);
if (crypt_res != NCA_FS_HEADER_LENGTH) if (crypt_res != NCA_FS_HEADER_LENGTH)
{ {
LOGFILE("Error decrypting NCA0 FS section header #%u!", i); LOGFILE("Error decrypting NCA0 \"%s\" FS section header #%u!", ctx->content_id_str, i);
return false; return false;
} }
} }
break; break;
default: default:
LOGFILE("Invalid NCA magic word! Wrong header key? (0x%08X)", magic); LOGFILE("Invalid NCA \"%s\" magic word! Wrong header key? (0x%08X)", ctx->content_id_str, magic);
return false; return false;
} }
@ -284,7 +271,7 @@ bool ncaDecryptHeader(NcaContext *ctx)
bool ncaEncryptHeader(NcaContext *ctx) bool ncaEncryptHeader(NcaContext *ctx)
{ {
if (!ctx) if (!ctx || !strlen(ctx->content_id_str))
{ {
LOGFILE("Invalid NCA context!"); LOGFILE("Invalid NCA context!");
return false; return false;
@ -300,25 +287,25 @@ bool ncaEncryptHeader(NcaContext *ctx)
aes128XtsContextCreate(&hdr_aes_ctx, header_key, header_key + 0x10, true); aes128XtsContextCreate(&hdr_aes_ctx, header_key, header_key + 0x10, true);
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header), &(ctx->header), NCA_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, true);
if (crypt_res != NCA_HEADER_LENGTH)
{
LOGFILE("Error encrypting partial NCA \"%s\" header!", ctx->content_id_str);
return false;
}
switch(ctx->format_version) switch(ctx->format_version)
{ {
case NcaVersion_Nca3: case NcaVersion_Nca3:
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header), &(ctx->header), NCA_FULL_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, true); crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, ctx->header.fs_headers, ctx->header.fs_headers, NCA_FULL_HEADER_LENGTH - NCA_HEADER_LENGTH, 2, NCA_AES_XTS_SECTOR_SIZE, true);
if (crypt_res != NCA_FULL_HEADER_LENGTH) if (crypt_res != NCA_FULL_HEADER_LENGTH)
{ {
LOGFILE("Error encrypting full NCA3 header!"); LOGFILE("Error encrypting NCA3 \"%s\" FS section headers!", ctx->content_id_str);
return false; return false;
} }
break; break;
case NcaVersion_Nca2: case NcaVersion_Nca2:
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header), &(ctx->header), NCA_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, true);
if (crypt_res != NCA_HEADER_LENGTH)
{
LOGFILE("Error encrypting partial NCA2 header!");
return false;
}
for(i = 0; i < NCA_FS_HEADER_COUNT; i++) for(i = 0; i < NCA_FS_HEADER_COUNT; i++)
{ {
if (!ctx->header.fs_entries[i].enable_entry) continue; if (!ctx->header.fs_entries[i].enable_entry) continue;
@ -326,20 +313,13 @@ bool ncaEncryptHeader(NcaContext *ctx)
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header.fs_headers[i]), &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, true); crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header.fs_headers[i]), &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, true);
if (crypt_res != NCA_FS_HEADER_LENGTH) if (crypt_res != NCA_FS_HEADER_LENGTH)
{ {
LOGFILE("Error encrypting NCA2 FS section header #%u!", i); LOGFILE("Error encrypting NCA2 \"%s\" FS section header #%u!", ctx->content_id_str, i);
return false; return false;
} }
} }
break; break;
case NcaVersion_Nca0: case NcaVersion_Nca0:
crypt_res = aes128XtsNintendoCrypt(&hdr_aes_ctx, &(ctx->header), &(ctx->header), NCA_HEADER_LENGTH, 0, NCA_AES_XTS_SECTOR_SIZE, true);
if (crypt_res != NCA_HEADER_LENGTH)
{
LOGFILE("Error encrypting NCA0 header!");
return false;
}
/* NCA0 FS section headers will be encrypted in-place, but they need to be written to their proper offsets */ /* NCA0 FS section headers will be encrypted in-place, but they need to be written to their proper offsets */
aes128XtsContextCreate(&nca0_fs_header_ctx, ctx->decrypted_keys[0].key, ctx->decrypted_keys[1].key, true); aes128XtsContextCreate(&nca0_fs_header_ctx, ctx->decrypted_keys[0].key, ctx->decrypted_keys[1].key, true);
@ -349,28 +329,28 @@ bool ncaEncryptHeader(NcaContext *ctx)
fs_header_offset = NCA_FS_ENTRY_BLOCK_OFFSET(ctx->header.fs_entries[i].start_block_offset); fs_header_offset = NCA_FS_ENTRY_BLOCK_OFFSET(ctx->header.fs_entries[i].start_block_offset);
crypt_res = aes128XtsNintendoCrypt(&nca0_fs_header_ctx, &(ctx->header.fs_headers[i]), &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, (fs_header_offset - 0x400) >> 9, \ crypt_res = aes128XtsNintendoCrypt(&nca0_fs_header_ctx, &(ctx->header.fs_headers[i]), &(ctx->header.fs_headers[i]), NCA_FS_HEADER_LENGTH, \
NCA_AES_XTS_SECTOR_SIZE, true); NCA_NCA0_FS_HEADER_AES_XTS_SECTOR(fs_header_offset), NCA_AES_XTS_SECTOR_SIZE, true);
if (crypt_res != NCA_FS_HEADER_LENGTH) if (crypt_res != NCA_FS_HEADER_LENGTH)
{ {
LOGFILE("Error decrypting NCA0 FS section header #%u!", i); LOGFILE("Error decrypting NCA0 \"%s\" FS section header #%u!", ctx->content_id_str, i);
return false; return false;
} }
} }
break; break;
default: default:
LOGFILE("Invalid NCA format version! (0x%02X)", ctx->format_version); LOGFILE("Invalid NCA \"%s\" format version! (0x%02X)", ctx->content_id_str, ctx->format_version);
return false; return false;
} }
return true; return true;
} }
bool ncaProcessContent(NcaContext *out, Ticket *tik, u8 storage_id, NcmContentStorage *ncm_storage, const NcmContentId *id, const u8 *hash, u8 type, const u8 *size, u8 id_offset, u8 hfs_partition_type) bool ncaInitializeContext(NcaContext *out, Ticket *tik, u8 storage_id, NcmContentStorage *ncm_storage, u8 hfs_partition_type, const NcmPackagedContentInfo *content_info)
{ {
if (!out || !tik || (storage_id != NcmStorageId_GameCard && !ncm_storage) || !id || !hash || type > NcmContentType_DeltaFragment || !size || \ if (!out || !tik || (storage_id != NcmStorageId_GameCard && !ncm_storage) || (storage_id == NcmStorageId_GameCard && hfs_partition_type > GameCardHashFileSystemPartitionType_Secure) || \
(storage_id == NcmStorageId_GameCard && hfs_partition_type > GameCardHashFileSystemPartitionType_Secure)) !content_info || content_info->info.content_type > NcmContentType_DeltaFragment)
{ {
LOGFILE("Invalid parameters!"); LOGFILE("Invalid parameters!");
return false; return false;
@ -380,15 +360,21 @@ bool ncaProcessContent(NcaContext *out, Ticket *tik, u8 storage_id, NcmContentSt
out->storage_id = storage_id; out->storage_id = storage_id;
out->ncm_storage = (out->storage_id != NcmStorageId_GameCard ? ncm_storage : NULL); out->ncm_storage = (out->storage_id != NcmStorageId_GameCard ? ncm_storage : NULL);
memcpy(&(out->id), id, sizeof(NcmContentId)); memcpy(&(out->content_id), &(content_info->info.content_id), sizeof(NcmContentId));
utilsGenerateHexStringFromData(out->id_str, sizeof(out->id_str), out->id.c, sizeof(out->id.c)); utilsGenerateHexStringFromData(out->content_id_str, sizeof(out->content_id_str), out->content_id.c, sizeof(out->content_id.c));
memcpy(out->hash, hash, SHA256_HASH_SIZE); memcpy(out->hash, content_info->hash, SHA256_HASH_SIZE);
utilsGenerateHexStringFromData(out->hash_str, sizeof(out->hash_str), out->hash, sizeof(out->hash)); utilsGenerateHexStringFromData(out->hash_str, sizeof(out->hash_str), out->hash, sizeof(out->hash));
out->type = type; out->content_type = content_info->info.content_type;
ncaConvertNcmContentSizeToU64(size, &(out->size)); out->id_offset = content_info->info.id_offset;
out->id_offset = id_offset;
ncaConvertNcmContentSizeToU64(content_info->info.size, &(out->content_size));
if (out->content_size < NCA_FULL_HEADER_LENGTH)
{
LOGFILE("Invalid size for NCA \"%s\"!", out->content_id_str);
return false;
}
out->rights_id_available = out->dirty_header = false; out->rights_id_available = out->dirty_header = false;
@ -396,7 +382,7 @@ bool ncaProcessContent(NcaContext *out, Ticket *tik, u8 storage_id, NcmContentSt
{ {
/* Retrieve gamecard NCA offset */ /* Retrieve gamecard NCA offset */
char nca_filename[0x30] = {0}; char nca_filename[0x30] = {0};
sprintf(nca_filename, "%s.%s", out->id_str, out->type == NcmContentType_Meta ? "cnmt.nca" : "nca"); sprintf(nca_filename, "%s.%s", out->content_id_str, out->content_type == NcmContentType_Meta ? "cnmt.nca" : "nca");
if (!gamecardGetOffsetAndSizeFromHashFileSystemPartitionEntryByName(hfs_partition_type, nca_filename, &(out->gamecard_offset), NULL)) if (!gamecardGetOffsetAndSizeFromHashFileSystemPartitionEntryByName(hfs_partition_type, nca_filename, &(out->gamecard_offset), NULL))
{ {
@ -408,20 +394,20 @@ bool ncaProcessContent(NcaContext *out, Ticket *tik, u8 storage_id, NcmContentSt
/* Read NCA header */ /* Read NCA header */
if (!ncaReadContent(out, &(out->header), sizeof(NcaHeader), 0)) if (!ncaReadContent(out, &(out->header), sizeof(NcaHeader), 0))
{ {
LOGFILE("Failed to read NCA \"%s\" header!", out->id_str); LOGFILE("Failed to read NCA \"%s\" header!", out->content_id_str);
return false; return false;
} }
/* Decrypt header */ /* Decrypt NCA header */
if (!ncaDecryptHeader(out)) if (!ncaDecryptHeader(out))
{ {
LOGFILE("Failed to decrypt NCA \"%s\" header!", out->id_str); LOGFILE("Failed to decrypt NCA \"%s\" header!", out->content_id_str);
return false; return false;
} }
if (out->header.content_size != out->size) if (out->header.content_size != out->content_size)
{ {
LOGFILE("Content size mismatch for NCA \"%s\"! (0x%lX != 0x%lX)", out->header.content_size, out->size); LOGFILE("Content size mismatch for NCA \"%s\"! (0x%lX != 0x%lX)", out->content_id_str, out->header.content_size, out->content_size);
return false; return false;
} }
@ -435,7 +421,7 @@ bool ncaProcessContent(NcaContext *out, Ticket *tik, u8 storage_id, NcmContentSt
/* This will return true if it has already been retrieved */ /* This will return true if it has already been retrieved */
if (!tikRetrieveTicketByRightsId(tik, &(out->header.rights_id), out->storage_id == NcmStorageId_GameCard)) if (!tikRetrieveTicketByRightsId(tik, &(out->header.rights_id), out->storage_id == NcmStorageId_GameCard))
{ {
LOGFILE("Error retrieving ticket for NCA \"%s\"!", out->id_str); LOGFILE("Error retrieving ticket for NCA \"%s\"!", out->content_id_str);
return false; return false;
} }
@ -458,12 +444,31 @@ bool ncaProcessContent(NcaContext *out, Ticket *tik, u8 storage_id, NcmContentSt
/* Fill section context */ /* Fill section context */
out->fs_contexts[i].nca_ctx = out; out->fs_contexts[i].nca_ctx = out;
out->fs_contexts[i].section_num = i; out->fs_contexts[i].section_num = i;
out->fs_contexts[i].offset = NCA_FS_ENTRY_BLOCK_OFFSET(out->header.fs_entries[i].start_block_offset); out->fs_contexts[i].section_offset = NCA_FS_ENTRY_BLOCK_OFFSET(out->header.fs_entries[i].start_block_offset);
out->fs_contexts[i].size = (NCA_FS_ENTRY_BLOCK_OFFSET(out->header.fs_entries[i].end_block_offset) - out->fs_contexts[i].offset); out->fs_contexts[i].section_size = (NCA_FS_ENTRY_BLOCK_OFFSET(out->header.fs_entries[i].end_block_offset) - out->fs_contexts[i].section_offset);
out->fs_contexts[i].section_type = NcaSectionType_Invalid; /* Placeholder */ out->fs_contexts[i].section_type = NcaSectionType_Invalid; /* Placeholder */
out->fs_contexts[i].encryption_type = (out->format_version == NcaVersion_Nca0 ? NcaEncryptionType_Nca0 : out->header.fs_headers[i].encryption_type);
out->fs_contexts[i].header = &(out->header.fs_headers[i]); out->fs_contexts[i].header = &(out->header.fs_headers[i]);
out->fs_contexts[i].use_xts = false;
/* Determine encryption type */
out->fs_contexts[i].encryption_type = (out->format_version == NcaVersion_Nca0 ? NcaEncryptionType_Nca0 : out->header.fs_headers[i].encryption_type);
if (out->fs_contexts[i].encryption_type == NcaEncryptionType_Auto)
{
switch(out->fs_contexts[i].section_num)
{
case 0: /* ExeFS PFS0 */
case 1: /* RomFS */
out->fs_contexts[i].encryption_type = NcaEncryptionType_AesCtr;
break;
case 2: /* Logo PFS0 */
out->fs_contexts[i].encryption_type = NcaEncryptionType_None;
break;
default:
break;
}
}
/* Check if we're dealing with an invalid encryption type value */
if (out->fs_contexts[i].encryption_type == NcaEncryptionType_Auto || out->fs_contexts[i].encryption_type > NcaEncryptionType_Nca0) continue;
/* Determine FS section type */ /* Determine FS section type */
if (out->fs_contexts[i].header->fs_type == NcaFsType_PartitionFs && out->fs_contexts[i].header->hash_type == NcaHashType_HierarchicalSha256) if (out->fs_contexts[i].header->fs_type == NcaFsType_PartitionFs && out->fs_contexts[i].header->hash_type == NcaHashType_HierarchicalSha256)
@ -479,34 +484,162 @@ bool ncaProcessContent(NcaContext *out, Ticket *tik, u8 storage_id, NcmContentSt
out->fs_contexts[i].section_type = NcaSectionType_Nca0RomFs; out->fs_contexts[i].section_type = NcaSectionType_Nca0RomFs;
} }
if (out->fs_contexts[i].section_type == NcaSectionType_Invalid || out->fs_contexts[i].encryption_type <= NcaEncryptionType_None) continue; /* Check if we're dealing with an invalid section type value */
if (out->fs_contexts[i].section_type >= NcaSectionType_Invalid) continue;
/* Initialize section CTR */ /* Initialize crypto related fields */
ncaInitializeAesCtrIv(out->fs_contexts[i].ctr, out->fs_contexts[i].header->section_ctr, out->fs_contexts[i].offset); if (out->fs_contexts[i].encryption_type > NcaEncryptionType_None && out->fs_contexts[i].encryption_type <= NcaEncryptionType_Nca0)
/* Initialize AES context */
if (out->rights_id_available)
{ {
/* AES-128-CTR */ /* Initialize section CTR */
aes128CtrContextCreate(&(out->fs_contexts[i].ctr_ctx), out->titlekey, out->fs_contexts[i].ctr); ncaInitializeAesCtrIv(out->fs_contexts[i].ctr, out->fs_contexts[i].header->section_ctr, out->fs_contexts[i].section_offset);
} else {
if (out->fs_contexts[i].encryption_type == NcaEncryptionType_AesCtr || out->fs_contexts[i].encryption_type == NcaEncryptionType_AesCtrEx) /* Initialize AES context */
if (out->rights_id_available)
{ {
/* AES-128-CTR */ aes128CtrContextCreate(&(out->fs_contexts[i].ctr_ctx), out->titlekey, out->fs_contexts[i].ctr);
aes128CtrContextCreate(&(out->fs_contexts[i].ctr_ctx), out->decrypted_keys[2].key, out->fs_contexts[i].ctr); } else {
} else if (out->fs_contexts[i].encryption_type == NcaEncryptionType_AesCtr || out->fs_contexts[i].encryption_type == NcaEncryptionType_AesCtrEx)
if (out->fs_contexts[i].encryption_type == NcaEncryptionType_AesXts || out->fs_contexts[i].encryption_type == NcaEncryptionType_Nca0) {
{ aes128CtrContextCreate(&(out->fs_contexts[i].ctr_ctx), out->decrypted_keys[2].key, out->fs_contexts[i].ctr);
/* AES-128-XTS */ } else
aes128XtsContextCreate(&(out->fs_contexts[i].xts_ctx), out->decrypted_keys[0].key, out->decrypted_keys[1].key, false); if (out->fs_contexts[i].encryption_type == NcaEncryptionType_AesXts || out->fs_contexts[i].encryption_type == NcaEncryptionType_Nca0)
out->fs_contexts[i].use_xts = true; {
aes128XtsContextCreate(&(out->fs_contexts[i].xts_ctx), out->decrypted_keys[0].key, out->decrypted_keys[1].key, false);
}
} }
} else {
memset(out->fs_contexts[i].ctr, 0, sizeof(out->fs_contexts[i].ctr));
memset(&(out->fs_contexts[i].ctr_ctx), 0, sizeof(Aes128CtrContext));
memset(&(out->fs_contexts[i].xts_ctx), 0, sizeof(Aes128XtsContext));
} }
} }
return true; return true;
} }
bool ncaReadContent(NcaContext *ctx, void *out, u64 read_size, u64 offset)
{
if (!ctx || !strlen(ctx->content_id_str) || (ctx->storage_id != NcmStorageId_GameCard && !ctx->ncm_storage) || (ctx->storage_id == NcmStorageId_GameCard && !ctx->gamecard_offset) || !out || \
!read_size || offset >= ctx->content_size || (offset + read_size) > ctx->content_size)
{
LOGFILE("Invalid parameters!");
return false;
}
Result rc = 0;
bool ret = false;
if (ctx->storage_id != NcmStorageId_GameCard)
{
/* Retrieve NCA data normally */
/* This strips NAX0 crypto from SD card NCAs (not used on eMMC NCAs) */
rc = ncmContentStorageReadContentIdFile(ctx->ncm_storage, out, read_size, &(ctx->content_id), offset);
ret = R_SUCCEEDED(rc);
if (!ret) LOGFILE("Failed to read 0x%lX bytes block at offset 0x%lX from NCA \"%s\"! (0x%08X) (ncm)", read_size, offset, ctx->content_id_str, rc);
} else {
/* Retrieve NCA data using raw gamecard reads */
/* Fixes NCA read issues with gamecards under HOS < 4.0.0 when using ncmContentStorageReadContentIdFile() */
ret = gamecardRead(out, read_size, ctx->gamecard_offset + offset);
if (!ret) LOGFILE("Failed to read 0x%lX bytes block at offset 0x%lX from NCA \"%s\"! (gamecard)", read_size, offset, ctx->content_id_str);
}
return ret;
}
bool ncaReadFsSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset)
{
if (!g_ncaCryptoBuffer || !ctx || !ctx->nca_ctx || ctx->section_num >= NCA_FS_HEADER_COUNT || ctx->section_offset < NCA_FULL_HEADER_LENGTH || ctx->section_type >= NcaSectionType_Invalid || \
ctx->encryption_type == NcaEncryptionType_Auto || ctx->encryption_type > NcaEncryptionType_Nca0 || !ctx->header || !out || !read_size || offset >= ctx->section_size || \
(offset + read_size) > ctx->section_size)
{
LOGFILE("Invalid NCA FS section header parameters!");
return false;
}
NcaContext *nca_ctx = (NcaContext*)ctx->nca_ctx;
u64 content_offset = (ctx->section_offset + offset);
if (!strlen(nca_ctx->content_id_str) || (nca_ctx->storage_id != NcmStorageId_GameCard && !nca_ctx->ncm_storage) || (nca_ctx->storage_id == NcmStorageId_GameCard && !nca_ctx->gamecard_offset) || \
content_offset >= nca_ctx->content_size || (content_offset + read_size) > nca_ctx->content_size)
{
LOGFILE("Invalid NCA header parameters!");
return false;
}
/* Read data right away if we're dealing with a FS section with no crypto */
if (ctx->encryption_type == NcaEncryptionType_None) return ncaReadContent(nca_ctx, out, read_size, content_offset);
/* Calculate offsets and block sizes */
size_t crypt_res = 0;
u64 block_start_offset = 0, block_end_offset = 0, block_size = 0;
u64 chunk_size = 0, out_chunk_size = 0;
u64 data_start_offset = 0, sector_num = 0;
switch(ctx->encryption_type)
{
case NcaEncryptionType_AesXts:
case NcaEncryptionType_Nca0:
block_start_offset = ROUND_DOWN(content_offset, NCA_AES_XTS_SECTOR_SIZE);
block_end_offset = ROUND_UP(content_offset + read_size, NCA_AES_XTS_SECTOR_SIZE);
sector_num = (ctx->encryption_type == NcaEncryptionType_AesXts ? offset : (content_offset - NCA_HEADER_LENGTH));
sector_num /= NCA_AES_XTS_SECTOR_SIZE;
break;
case NcaEncryptionType_AesCtr:
case NcaEncryptionType_AesCtrEx: /* This function is only supposed to be used on Patch RomFS sections when *not* reading BKTR subsections */
block_start_offset = ROUND_DOWN(content_offset, AES_BLOCK_SIZE);
block_end_offset = ROUND_UP(content_offset + read_size, AES_BLOCK_SIZE);
ncaUpdateAesCtrIv(ctx->ctr, block_start_offset);
break;
default:
break;
}
block_size = (block_end_offset - block_start_offset);
chunk_size = (block_size > NCA_CRYPTO_BUFFER_SIZE ? NCA_CRYPTO_BUFFER_SIZE : block_size);
data_start_offset = (content_offset - block_start_offset);
out_chunk_size = (block_size > NCA_CRYPTO_BUFFER_SIZE ? (NCA_CRYPTO_BUFFER_SIZE - data_start_offset) : read_size);
/* Read data */
if (!ncaReadContent(nca_ctx, g_ncaCryptoBuffer, chunk_size, block_start_offset))
{
LOGFILE("Failed to read 0x%lX bytes encrypted data block at offset 0x%lX from NCA \"%s\" FS section #%u!", chunk_size, block_start_offset, nca_ctx->content_id_str, ctx->section_num);
return false;
}
/* Decrypt data */
switch(ctx->encryption_type)
{
case NcaEncryptionType_AesXts:
case NcaEncryptionType_Nca0:
crypt_res = aes128XtsNintendoCrypt(&(ctx->xts_ctx), g_ncaCryptoBuffer, g_ncaCryptoBuffer, chunk_size, sector_num, NCA_AES_XTS_SECTOR_SIZE, false);
if (crypt_res != chunk_size)
{
LOGFILE("Failed to decrypt 0x%lX bytes data block at offset 0x%lX from NCA \"%s\" FS section #%u!", chunk_size, block_start_offset, nca_ctx->content_id_str, ctx->section_num);
return false;
}
break;
case NcaEncryptionType_AesCtr:
case NcaEncryptionType_AesCtrEx: /* This function is only supposed to be used on Patch RomFS sections when *not* reading BKTR subsections */
aes128CtrContextResetCtr(&(ctx->ctr_ctx), ctx->ctr);
aes128CtrCrypt(&(ctx->ctr_ctx), g_ncaCryptoBuffer, g_ncaCryptoBuffer, chunk_size);
break;
default:
break;
}
/* Copy decrypted data */
memcpy(out, g_ncaCryptoBuffer + data_start_offset, out_chunk_size);
if (block_size > NCA_CRYPTO_BUFFER_SIZE) return ncaReadFsSection(ctx, (u8*)out + out_chunk_size, read_size - out_chunk_size, offset + out_chunk_size);
return true;
}
@ -533,6 +666,30 @@ static bool ncaCheckIfVersion0KeyAreaIsEncrypted(NcaContext *ctx)
return true; return true;
} }
static inline u8 ncaGetKeyGenerationValue(NcaContext *ctx)
{
if (!ctx) return 0;
return (ctx->header.key_generation > ctx->header.key_generation_old ? ctx->header.key_generation : ctx->header.key_generation_old);
}
static inline bool ncaCheckRightsIdAvailability(NcaContext *ctx)
{
if (!ctx) return false;
bool rights_id_available = false;
for(u8 i = 0; i < 0x10; i++)
{
if (ctx->header.rights_id.c[i] != 0)
{
rights_id_available = true;
break;
}
}
return rights_id_available;
}
static void ncaInitializeAesCtrIv(u8 *out, const u8 *ctr, u64 offset) static void ncaInitializeAesCtrIv(u8 *out, const u8 *ctr, u64 offset)
{ {
if (!out || !ctr) return; if (!out || !ctr) return;

View file

@ -22,25 +22,26 @@
#include <switch.h> #include <switch.h>
#include "tik.h" #include "tik.h"
#define NCA_HEADER_LENGTH 0x400 #define NCA_HEADER_LENGTH 0x400
#define NCA_FS_HEADER_LENGTH 0x200 #define NCA_FS_HEADER_LENGTH 0x200
#define NCA_FS_HEADER_COUNT 4 #define NCA_FS_HEADER_COUNT 4
#define NCA_FULL_HEADER_LENGTH (NCA_HEADER_LENGTH + (NCA_FS_HEADER_LENGTH * NCA_FS_HEADER_COUNT)) #define NCA_FULL_HEADER_LENGTH (NCA_HEADER_LENGTH + (NCA_FS_HEADER_LENGTH * NCA_FS_HEADER_COUNT))
#define NCA_NCA0_MAGIC 0x4E434130 /* "NCA0" */ #define NCA_NCA0_MAGIC 0x4E434130 /* "NCA0" */
#define NCA_NCA2_MAGIC 0x4E434132 /* "NCA2" */ #define NCA_NCA2_MAGIC 0x4E434132 /* "NCA2" */
#define NCA_NCA3_MAGIC 0x4E434133 /* "NCA3" */ #define NCA_NCA3_MAGIC 0x4E434133 /* "NCA3" */
#define NCA_IVFC_MAGIC 0x49564643 /* "IVFC" */ #define NCA_IVFC_MAGIC 0x49564643 /* "IVFC" */
#define NCA_BKTR_MAGIC 0x424B5452 /* "BKTR" */ #define NCA_BKTR_MAGIC 0x424B5452 /* "BKTR" */
#define NCA_FS_ENTRY_BLOCK_SIZE 0x200 #define NCA_FS_ENTRY_BLOCK_SIZE 0x200
#define NCA_FS_ENTRY_BLOCK_OFFSET(x) ((u64)(x) * NCA_FS_ENTRY_BLOCK_SIZE) #define NCA_FS_ENTRY_BLOCK_OFFSET(x) ((u64)(x) * NCA_FS_ENTRY_BLOCK_SIZE)
#define NCA_AES_XTS_SECTOR_SIZE 0x200 #define NCA_AES_XTS_SECTOR_SIZE 0x200
#define NCA_NCA0_FS_HEADER_AES_XTS_SECTOR(x) (((x) - NCA_HEADER_LENGTH) >> 9)
#define NCA_IVFC_BLOCK_SIZE(x) (1 << (x)) #define NCA_IVFC_BLOCK_SIZE(x) (1 << (x))
typedef enum { typedef enum {
NcaDistributionType_Download = 0, NcaDistributionType_Download = 0,
@ -114,7 +115,7 @@ typedef enum {
NcaEncryptionType_AesXts = 2, NcaEncryptionType_AesXts = 2,
NcaEncryptionType_AesCtr = 3, NcaEncryptionType_AesCtr = 3,
NcaEncryptionType_AesCtrEx = 4, NcaEncryptionType_AesCtrEx = 4,
NcaEncryptionType_Nca0 = 5 ///< Only used to represent NCA0 FS section crypto - not actually used as a possible value for this field. NcaEncryptionType_Nca0 = 5 ///< Only used to represent NCA0 AES XTS FS section crypto - not actually used as a possible value for this field.
} NcaEncryptionType; } NcaEncryptionType;
typedef struct { typedef struct {
@ -134,7 +135,7 @@ typedef struct {
typedef struct { typedef struct {
u64 offset; u64 offset;
u64 size; u64 size;
u32 block_size; ///< Use NCA_IVFC_CALC_BLOCK_SIZE to calculate the actual block size using this value. u32 block_size; ///< Use NCA_IVFC_BLOCK_SIZE to calculate the actual block size using this value.
u8 reserved[0x4]; u8 reserved[0x4];
} NcaHierarchicalIntegrityLayerInfo; } NcaHierarchicalIntegrityLayerInfo;
@ -254,111 +255,60 @@ typedef enum {
typedef struct { typedef struct {
void *nca_ctx; ///< NcaContext. Used to perform NCA reads. void *nca_ctx; ///< NcaContext. Used to perform NCA reads.
u8 section_num; u8 section_num;
u64 offset; u64 section_offset;
u64 size; u64 section_size;
u8 section_type; ///< NcaSectionType. u8 section_type; ///< NcaSectionType.
u8 encryption_type; ///< NcaEncryptionType. u8 encryption_type; ///< NcaEncryptionType.
NcaFsHeader *header; NcaFsHeader *header;
bool use_xts; u8 ctr[0x10]; ///< Used to update the AES CTR context IV based on the desired offset.
Aes128CtrContext ctr_ctx; Aes128CtrContext ctr_ctx;
Aes128XtsContext xts_ctx; Aes128XtsContext xts_ctx;
u8 ctr[0x10]; ///< Used to update the AES context IV based on the desired offset. } NcaFsSectionContext;
} NcaFsContext;
typedef struct { typedef struct {
u8 storage_id; ///< NcmStorageId. u8 storage_id; ///< NcmStorageId.
NcmContentStorage *ncm_storage; ///< Pointer to a NcmContentStorage instance. Used to read NCA data. NcmContentStorage *ncm_storage; ///< Pointer to a NcmContentStorage instance. Used to read NCA data.
u64 gamecard_offset; ///< Used to read NCA data from a gamecard using a FsStorage instance when storage_id == NcmStorageId_GameCard. u64 gamecard_offset; ///< Used to read NCA data from a gamecard using a FsStorage instance when storage_id == NcmStorageId_GameCard.
NcmContentId id; ///< Also used to read NCA data. NcmContentId content_id; ///< Also used to read NCA data.
char id_str[0x21]; char content_id_str[0x21];
u8 hash[0x20]; u8 hash[0x20]; ///< Retrieved from NcmPackagedContentInfo.
char hash_str[0x41]; char hash_str[0x41];
u8 format_version; ///< NcaVersion. u8 format_version; ///< NcaVersion.
u8 type; ///< NcmContentType. Retrieved from NcmContentInfo. u8 content_type; ///< NcmContentType. Retrieved from NcmPackagedContentInfo.
u64 size; ///< Retrieved from NcmContentInfo. u64 content_size; ///< Retrieved from NcmPackagedContentInfo.
u8 key_generation; ///< NcaKeyGenerationOld / NcaKeyGeneration. Retrieved from the decrypted header. u8 key_generation; ///< NcaKeyGenerationOld / NcaKeyGeneration. Retrieved from the decrypted header.
u8 id_offset; ///< Retrieved from NcmContentInfo. u8 id_offset; ///< Retrieved from NcmPackagedContentInfo.
bool rights_id_available; bool rights_id_available;
u8 titlekey[0x10];
bool dirty_header; bool dirty_header;
NcaHeader header; NcaHeader header;
NcaFsContext fs_contexts[4]; NcaFsSectionContext fs_contexts[4];
NcaKey decrypted_keys[4]; NcaKey decrypted_keys[4];
u8 titlekey[0x10];
} NcaContext; } NcaContext;
/// Reads raw encrypted data from a NCA using an input NCA context. /// Functions to control the internal heap buffer used by NCA FS section crypto code.
/// 'storage_id', 'id', 'id_str' and 'size' elements must have been filled beforehand (e.g. using ncaProcessContent()). /// Must be called at startup.
/// If 'storage_id' != NcmStorageId_GameCard, the 'ncm_storage' element should point to a valid NcmContentStorage instance. bool ncaAllocateCryptoBuffer(void);
/// If 'storage_id' == NcmStorageId_GameCard, the 'gamecard_offset' element should hold a value greater than zero. void ncaFreeCryptoBuffer(void);
/// Initializes a valid NCA context.
/// If the NCA holds a populated Rights ID field, and if the Ticket object pointed to by 'tik' hasn't been filled, ticket data will be retrieved.
/// If 'storage_id' != NcmStorageId_GameCard, the 'ncm_storage' argument must point to a valid NcmContentStorage instance, previously opened using the same NcmStorageId value.
/// If 'storage_id' == NcmStorageId_GameCard, the 'hfs_partition_type' argument must be a valid GameCardHashFileSystemPartitionType value.
bool ncaInitializeContext(NcaContext *out, Ticket *tik, u8 storage_id, NcmContentStorage *ncm_storage, u8 hfs_partition_type, const NcmPackagedContentInfo *content_info);
/// Reads raw encrypted data from a NCA using an input NCA context, previously initialized by ncaInitializeContext().
bool ncaReadContent(NcaContext *ctx, void *out, u64 read_size, u64 offset); bool ncaReadContent(NcaContext *ctx, void *out, u64 read_size, u64 offset);
/// Generates a valid NCA context. /// Reads decrypted data from a NCA FS section using an input NCA FS section context.
/// 'hash', 'type', 'size' and 'id_offset' elements can be retrieved from a NcmContentInfo object. /// Input offset must be relative to the start of the NCA FS section.
/// If the NCA holds a populated Rights ID field, and if the Ticket object pointed to by 'tik' hasn't been filled, the ticket and titlekey will be retrieved. bool ncaReadFsSection(NcaFsSectionContext *ctx, void *out, u64 read_size, u64 offset);
/// 'hfs_partition_type' is only necessary if 'storage_id' == NcmStorageId_GameCard.
bool ncaProcessContent(NcaContext *out, Ticket *tik, u8 storage_id, NcmContentStorage *ncm_storage, const NcmContentId *id, const u8 *hash, u8 type, const u8 *size, u8 id_offset, u8 hfs_partition_type);
static inline void ncaConvertNcmContentSizeToU64(const u8 *size, u64 *out)
{
if (!size || !out) return;
*out = 0;
memcpy(out, size, 6);
}
static inline void ncaConvertU64ToNcmContentSize(const u64 *size, u8 *out)
{
if (!size || !out) return;
memcpy(out, size, 6);
}
static inline u8 ncaGetKeyGenerationValue(NcaContext *ctx)
{
if (!ctx) return 0;
return (ctx->header.key_generation > ctx->header.key_generation_old ? ctx->header.key_generation : ctx->header.key_generation_old);
}
static inline void ncaSetDownloadDistributionType(NcaContext *ctx)
{
if (!ctx || ctx->header.distribution_type == NcaDistributionType_Download) return;
ctx->header.distribution_type = NcaDistributionType_Download;
ctx->dirty_header = true;
}
static inline bool ncaCheckRightsIdAvailability(NcaContext *ctx)
{
if (!ctx) return false;
bool rights_id_available = false;
for(u8 i = 0; i < 0x10; i++)
{
if (ctx->header.rights_id.c[i] != 0)
{
rights_id_available = true;
break;
}
}
return rights_id_available;
}
static inline void ncaWipeRightsId(NcaContext *ctx)
{
if (!ctx) return;
memset(&(ctx->header.rights_id), 0, sizeof(FsRightsId));
ctx->dirty_header = true;
}
bool ncaDecryptKeyArea(NcaContext *nca_ctx); bool ncaDecryptKeyArea(NcaContext *nca_ctx);
bool ncaEncryptKeyArea(NcaContext *nca_ctx); bool ncaEncryptKeyArea(NcaContext *nca_ctx);
@ -369,6 +319,33 @@ bool ncaEncryptHeader(NcaContext *ctx);
/// Miscellanous functions.
static inline void ncaConvertNcmContentSizeToU64(const u8 *size, u64 *out)
{
if (!size || !out) return;
*out = 0;
memcpy(out, size, 6);
}
static inline void ncaConvertU64ToNcmContentSize(const u64 *size, u8 *out)
{
if (!size || !out) return;
memcpy(out, size, 6);
}
static inline void ncaSetDownloadDistributionType(NcaContext *ctx)
{
if (!ctx || ctx->header.distribution_type == NcaDistributionType_Download) return;
ctx->header.distribution_type = NcaDistributionType_Download;
ctx->dirty_header = true;
}
static inline void ncaWipeRightsId(NcaContext *ctx)
{
if (!ctx) return;
memset(&(ctx->header.rights_id), 0, sizeof(FsRightsId));
ctx->dirty_header = true;
}
#endif /* __NCA_H__ */ #endif /* __NCA_H__ */

View file

@ -27,6 +27,7 @@
#include "gamecard.h" #include "gamecard.h"
#include "services.h" #include "services.h"
#include "utils.h" #include "utils.h"
#include "nca.h"
#include "fatfs/ff.h" #include "fatfs/ff.h"
/* Global variables. */ /* Global variables. */
@ -119,6 +120,8 @@ void utilsOverclockSystem(bool restore)
bool utilsInitializeResources(void) bool utilsInitializeResources(void)
{ {
Result rc = 0;
/* Initialize needed services */ /* Initialize needed services */
if (!servicesInitialize()) if (!servicesInitialize())
{ {
@ -133,8 +136,15 @@ bool utilsInitializeResources(void)
return false; return false;
} }
/* Allocate NCA crypto buffer */
if (!ncaAllocateCryptoBuffer())
{
LOGFILE("Unable to allocate memory for NCA crypto buffer!");
return false;
}
/* Initialize gamecard interface */ /* Initialize gamecard interface */
Result rc = gamecardInitialize(); rc = gamecardInitialize();
if (R_FAILED(rc)) if (R_FAILED(rc))
{ {
LOGFILE("Failed to initialize gamecard interface!"); LOGFILE("Failed to initialize gamecard interface!");
@ -182,6 +192,9 @@ void utilsCloseResources(void)
/* Deinitialize gamecard interface */ /* Deinitialize gamecard interface */
gamecardExit(); gamecardExit();
/* Free NCA crypto buffer */
ncaFreeCryptoBuffer();
/* Close initialized services */ /* Close initialized services */
servicesClose(); servicesClose();
} }

View file

@ -29,7 +29,8 @@
#define MAX_ELEMENTS(x) ((sizeof((x))) / (sizeof((x)[0]))) #define MAX_ELEMENTS(x) ((sizeof((x))) / (sizeof((x)[0])))
#define ROUND_UP(x, y) ((x) + (((y) - ((x) % (y))) % (y))) /* Aligns 'x' bytes to a 'y' bytes boundary. */ #define ROUND_DOWN(x, y) ((x) & ~((y) - 1))
#define ROUND_UP(x, y) ((x) + (((y) - ((x) % (y))) % (y)))
#define BIS_SYSTEM_PARTITION_MOUNT_NAME "sys:" #define BIS_SYSTEM_PARTITION_MOUNT_NAME "sys:"