hekate/bdk/soc/fuse.c

477 lines
10 KiB
C
Raw Normal View History

2018-05-01 17:15:48 +12:00
/*
2018-08-05 14:40:32 +03:00
* Copyright (c) 2018 naehrwert
2018-09-10 00:44:04 +02:00
* Copyright (c) 2018 shuffle2
* Copyright (c) 2018 balika011
* Copyright (c) 2019-2023 CTCaer
2018-08-05 14:40:32 +03:00
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
2018-05-01 17:15:48 +12:00
2018-09-10 00:44:04 +02:00
#include <string.h>
#include <mem/heap.h>
#include <sec/se.h>
#include <sec/se_t210.h>
#include <soc/fuse.h>
2020-06-26 18:45:21 +03:00
#include <soc/hw_init.h>
#include <soc/t210.h>
2020-11-15 13:56:45 +02:00
#include <utils/types.h>
2018-09-10 00:44:04 +02:00
static const u32 evp_thunk_template[] = {
0xe92d0007, // STMFD SP!, {R0-R2}
0xe1a0200e, // MOV R2, LR
0xe2422002, // SUB R2, R2, #2
0xe5922000, // LDR R2, [R2]
0xe20220ff, // AND R2, R2, #0xFF
0xe1a02082, // MOV R2, R2,LSL#1
0xe59f001c, // LDR R0, =evp_thunk_template
0xe59f101c, // LDR R1, =thunk_end
0xe0411000, // SUB R1, R1, R0
0xe59f0018, // LDR R0, =iram_evp_thunks
0xe0800001, // ADD R0, R0, R1
0xe0822000, // ADD R2, R2, R0
0xe3822001, // ORR R2, R2, #1
0xe8bd0003, // LDMFD SP!, {R0,R1}
0xe12fff12, // BX R2
// idx: 15:
2018-09-10 00:44:04 +02:00
0x001007b0, // off_1007EC DCD evp_thunk_template
0x001007f8, // off_1007F0 DCD thunk_end
0x40004c30, // off_1007F4 DCD iram_evp_thunks
// thunk_end is here
};
static const u32 evp_thunk_func_offsets_t210b01[] = {
0x0010022c, // off_100268 DCD evp_thunk_template
0x00100174, // off_10026C DCD thunk_end
0x40004164, // off_100270 DCD iram_evp_thunks
// thunk_end is here
};
2018-09-10 00:44:04 +02:00
// treated as 12bit values
static const u32 hash_vals[] = {1, 2, 4, 8, 0, 3, 5, 6, 7, 9, 10, 11};
2018-05-01 17:15:48 +12:00
void fuse_disable_program()
{
FUSE(FUSE_DISABLEREGPROGRAM) = 1;
}
u32 fuse_read_odm(u32 idx)
{
return FUSE(FUSE_RESERVED_ODMX(idx));
}
2018-09-10 00:44:04 +02:00
2020-06-14 14:10:29 +03:00
u32 fuse_read_odm_keygen_rev()
{
2020-07-04 21:13:25 +03:00
bool has_new_keygen;
// Check if it has new keygen.
if (hw_get_chip_id() == GP_HIDREV_MAJOR_T210B01)
has_new_keygen = true;
else
has_new_keygen = (fuse_read_odm(4) & 0x800) && fuse_read_odm(0) == 0x8E61ECAE && fuse_read_odm(1) == 0xF2BA3BB2;
if (has_new_keygen)
2020-06-14 14:10:29 +03:00
return (fuse_read_odm(2) & 0x1F);
return 0;
}
u32 fuse_read_dramid(bool raw_id)
{
bool tegra_t210 = hw_get_chip_id() == GP_HIDREV_MAJOR_T210;
u32 odm4 = fuse_read_odm(4);
u32 dramid = (odm4 & 0xF8) >> 3;
// Get extended dram id info.
if (!tegra_t210)
dramid |= (odm4 & 0x7000) >> 7;
if (raw_id)
return dramid;
if (tegra_t210)
{
if (dramid > 7)
dramid = 0;
}
else
{
if (dramid > 34)
dramid = 8;
}
return dramid;
}
u32 fuse_read_hw_state()
{
if ((fuse_read_odm(4) & 3) != 3)
return FUSE_NX_HW_STATE_PROD;
else
return FUSE_NX_HW_STATE_DEV;
}
2020-06-26 18:45:21 +03:00
u32 fuse_read_hw_type()
{
if (hw_get_chip_id() == GP_HIDREV_MAJOR_T210B01)
{
switch ((fuse_read_odm(4) & 0xF0000) >> 16)
{
case 2:
return FUSE_NX_HW_TYPE_HOAG;
2021-08-28 16:44:16 +03:00
case 4:
return FUSE_NX_HW_TYPE_AULA;
case 1:
default:
return FUSE_NX_HW_TYPE_IOWA;
2020-06-26 18:45:21 +03:00
}
}
return FUSE_NX_HW_TYPE_ICOSA;
}
int fuse_set_sbk()
{
if (FUSE(FUSE_PRIVATE_KEY0) != 0xFFFFFFFF)
{
// Read SBK from fuses.
u32 sbk[4] = {
FUSE(FUSE_PRIVATE_KEY0),
FUSE(FUSE_PRIVATE_KEY1),
FUSE(FUSE_PRIVATE_KEY2),
FUSE(FUSE_PRIVATE_KEY3)
};
// Set SBK to slot 14.
se_aes_key_set(14, sbk, SE_KEY_128_SIZE);
// Lock SBK from being read.
se_key_acc_ctrl(14, SE_KEY_TBL_DIS_KEYREAD_FLAG);
return 1;
}
return 0;
}
2018-09-10 00:44:04 +02:00
void fuse_wait_idle()
{
2023-12-25 03:47:26 +02:00
while (((FUSE(FUSE_CTRL) >> 16) & 0x1F) != FUSE_STATUS_IDLE)
;
2018-09-10 00:44:04 +02:00
}
2019-04-16 20:05:35 +03:00
u32 fuse_read(u32 addr)
{
FUSE(FUSE_ADDR) = addr;
FUSE(FUSE_CTRL) = (FUSE(FUSE_ADDR) & ~FUSE_CMD_MASK) | FUSE_READ;
fuse_wait_idle();
return FUSE(FUSE_RDATA);
2019-04-16 20:05:35 +03:00
}
void fuse_read_array(u32 *words)
{
u32 array_size = (hw_get_chip_id() == GP_HIDREV_MAJOR_T210B01) ?
FUSE_ARRAY_WORDS_NUM_B01 : FUSE_ARRAY_WORDS_NUM;
for (u32 i = 0; i < array_size; i++)
2019-04-16 20:05:35 +03:00
words[i] = fuse_read(i);
}
static u32 _parity32_even(u32 *words, u32 count)
2018-09-10 00:44:04 +02:00
{
u32 acc = words[0];
for (u32 i = 1; i < count; i++)
acc ^= words[i];
2018-09-10 00:44:04 +02:00
u32 lo = ((acc & 0xffff) ^ (acc >> 16)) & 0xff;
u32 hi = ((acc & 0xffff) ^ (acc >> 16)) >> 8;
u32 x = hi ^ lo;
lo = ((x & 0xf) ^ (x >> 4)) & 3;
hi = ((x & 0xf) ^ (x >> 4)) >> 2;
x = hi ^ lo;
2018-09-10 00:44:04 +02:00
return (x & 1) ^ (x >> 1);
}
2019-04-16 20:05:35 +03:00
static int _patch_hash_one(u32 *word)
2018-09-10 00:44:04 +02:00
{
u32 bits20_31 = *word & 0xfff00000;
2019-04-16 20:05:35 +03:00
u32 parity_bit = _parity32_even(&bits20_31, 1);
2018-09-10 00:44:04 +02:00
u32 hash = 0;
2018-09-10 00:44:04 +02:00
for (u32 i = 0; i < 12; i++)
{
if (*word & (1 << (20 + i)))
hash ^= hash_vals[i];
}
2018-09-10 00:44:04 +02:00
if (hash == 0)
{
if (parity_bit == 0)
return 0;
2018-09-10 00:44:04 +02:00
*word ^= 1 << 24;
2018-09-10 00:44:04 +02:00
return 1;
}
2018-09-10 00:44:04 +02:00
if (parity_bit == 0)
return 3;
2020-11-15 13:56:45 +02:00
for (u32 i = 0; i < ARRAY_SIZE(hash_vals); i++)
2018-09-10 00:44:04 +02:00
{
if (hash_vals[i] == hash)
{
*word ^= 1 << (20 + i);
return 1;
}
}
2018-09-10 00:44:04 +02:00
return 2;
}
2019-04-16 20:05:35 +03:00
static int _patch_hash_multi(u32 *words, u32 count)
2018-09-10 00:44:04 +02:00
{
2019-04-16 20:05:35 +03:00
u32 parity_bit = _parity32_even(words, count);
2018-09-10 00:44:04 +02:00
u32 bits0_14 = words[0] & 0x7fff;
u32 bit15 = words[0] & 0x8000;
u32 bits16_19 = words[0] & 0xf0000;
u32 hash = 0;
words[0] = bits16_19;
for (u32 i = 0; i < count; i++)
{
u32 w = words[i];
if (w)
{
for (u32 bitpos = 0; bitpos < 32; bitpos++)
{
if ((w >> bitpos) & 1)
hash ^= 0x4000 + i * 32 + bitpos;
}
}
}
hash ^= bits0_14;
// stupid but this is what original code does.
// equivalent to original words[0] &= 0xfff00000
words[0] = bits16_19 ^ bit15 ^ bits0_14;
if (hash == 0)
{
if (parity_bit == 0)
return 0;
2018-09-10 00:44:04 +02:00
words[0] ^= 0x8000;
return 1;
}
if (parity_bit == 0)
return 3;
2018-09-10 00:44:04 +02:00
u32 bitcount = hash - 0x4000;
if (bitcount < 16 || bitcount >= count * 32)
{
u32 num_set = 0;
for (u32 bitpos = 0; bitpos < 15; bitpos++)
{
if ((hash >> bitpos) & 1)
num_set++;
}
if (num_set != 1)
return 2;
2018-09-10 00:44:04 +02:00
words[0] ^= hash;
return 1;
}
words[bitcount / 32] ^= 1 << (hash & 0x1f);
return 1;
}
int fuse_read_ipatch(void (*ipatch)(u32 offset, u32 value))
{
u32 words[80];
u32 word_count;
u32 word_addr;
u32 word0 = 0;
u32 total_read = 0;
word_count = FUSE(FUSE_FIRST_BOOTROM_PATCH_SIZE);
2019-04-16 20:05:35 +03:00
word_count &= 0x7F;
word_addr = FUSE_ARRAY_WORDS_NUM - 1;
2018-09-10 00:44:04 +02:00
while (word_count)
{
total_read += word_count;
2020-11-15 13:56:45 +02:00
if (total_read >= ARRAY_SIZE(words))
2018-09-10 00:44:04 +02:00
break;
2018-09-10 00:44:04 +02:00
for (u32 i = 0; i < word_count; i++)
{
2019-04-16 20:05:35 +03:00
words[i] = fuse_read(word_addr--);
// Parse extra T210B01 fuses when the difference is reached.
if (hw_get_chip_id() == GP_HIDREV_MAJOR_T210B01 &&
word_addr == ((FUSE_ARRAY_WORDS_NUM - 1) -
(FUSE_ARRAY_WORDS_NUM_B01 - FUSE_ARRAY_WORDS_NUM) / sizeof(u32)))
{
word_addr = FUSE_ARRAY_WORDS_NUM_B01 - 1;
}
}
2018-09-10 00:44:04 +02:00
word0 = words[0];
2019-04-16 20:05:35 +03:00
if (_patch_hash_multi(words, word_count) >= 2)
2018-09-10 00:44:04 +02:00
return 1;
2019-04-16 20:05:35 +03:00
u32 ipatch_count = (words[0] >> 16) & 0xF;
2018-09-10 00:44:04 +02:00
if (ipatch_count)
{
for (u32 i = 0; i < ipatch_count; i++)
{
2018-12-16 12:35:48 +01:00
u32 word = words[i + 1];
2018-09-10 00:44:04 +02:00
u32 addr = (word >> 16) * 2;
2019-04-16 20:05:35 +03:00
u32 data = word & 0xFFFF;
2018-09-10 00:44:04 +02:00
ipatch(addr, data);
}
}
2018-09-10 00:44:04 +02:00
words[0] = word0;
if ((word0 >> 25) == 0)
break;
2019-04-16 20:05:35 +03:00
if (_patch_hash_one(&word0) >= 2)
2018-09-10 00:44:04 +02:00
return 3;
2018-09-10 00:44:04 +02:00
word_count = word0 >> 25;
}
2018-09-10 00:44:04 +02:00
return 0;
}
int fuse_read_evp_thunk(u32 *iram_evp_thunks, u32 *iram_evp_thunks_len)
{
u32 words[80];
u32 word_count;
u32 word_addr;
u32 word0 = 0;
u32 total_read = 0;
int evp_thunk_written = 0;
void *evp_thunk_dst_addr = 0;
bool t210b01 = hw_get_chip_id() == GP_HIDREV_MAJOR_T210B01;
u32 *evp_thunk_tmp = (u32 *)malloc(sizeof(evp_thunk_template));
2018-09-10 00:44:04 +02:00
memcpy(evp_thunk_tmp, evp_thunk_template, sizeof(evp_thunk_template));
2018-09-10 00:44:04 +02:00
memset(iram_evp_thunks, 0, *iram_evp_thunks_len);
if (t210b01)
memcpy(&evp_thunk_tmp[15], evp_thunk_func_offsets_t210b01, sizeof(evp_thunk_func_offsets_t210b01));
2018-09-10 00:44:04 +02:00
word_count = FUSE(FUSE_FIRST_BOOTROM_PATCH_SIZE);
2019-04-16 20:05:35 +03:00
word_count &= 0x7F;
word_addr = FUSE_ARRAY_WORDS_NUM - 1;
2018-09-10 00:44:04 +02:00
while (word_count)
{
total_read += word_count;
2020-11-15 13:56:45 +02:00
if (total_read >= ARRAY_SIZE(words))
2018-09-10 00:44:04 +02:00
break;
2018-09-10 00:44:04 +02:00
for (u32 i = 0; i < word_count; i++)
{
2019-04-16 20:05:35 +03:00
words[i] = fuse_read(word_addr--);
// Parse extra T210B01 fuses when the difference is reached.
if (hw_get_chip_id() == GP_HIDREV_MAJOR_T210B01 &&
word_addr == ((FUSE_ARRAY_WORDS_NUM - 1) -
(FUSE_ARRAY_WORDS_NUM_B01 - FUSE_ARRAY_WORDS_NUM) / sizeof(u32)))
{
word_addr = FUSE_ARRAY_WORDS_NUM_B01 - 1;
}
}
2018-09-10 00:44:04 +02:00
word0 = words[0];
2019-04-16 20:05:35 +03:00
if (_patch_hash_multi(words, word_count) >= 2)
2018-09-10 00:44:04 +02:00
{
free(evp_thunk_tmp);
2018-09-10 00:44:04 +02:00
return 1;
}
2019-04-16 20:05:35 +03:00
u32 ipatch_count = (words[0] >> 16) & 0xF;
2018-09-10 00:44:04 +02:00
u32 insn_count = word_count - ipatch_count - 1;
if (insn_count)
{
if (!evp_thunk_written)
{
evp_thunk_dst_addr = (void *)iram_evp_thunks;
memcpy(evp_thunk_dst_addr, (void *)evp_thunk_tmp, sizeof(evp_thunk_template));
evp_thunk_dst_addr += sizeof(evp_thunk_template);
2018-09-10 00:44:04 +02:00
evp_thunk_written = 1;
*iram_evp_thunks_len = sizeof(evp_thunk_template);
2018-09-10 00:44:04 +02:00
//write32(TEGRA_EXCEPTION_VECTORS_BASE + 0x208, iram_evp_thunks);
}
u32 thunk_patch_len = insn_count * sizeof(u32);
memcpy(evp_thunk_dst_addr, &words[ipatch_count + 1], thunk_patch_len);
evp_thunk_dst_addr += thunk_patch_len;
*iram_evp_thunks_len += thunk_patch_len;
}
2018-09-10 00:44:04 +02:00
words[0] = word0;
if ((word0 >> 25) == 0)
break;
2019-04-16 20:05:35 +03:00
if (_patch_hash_one(&word0) >= 2)
2018-09-10 00:44:04 +02:00
{
free(evp_thunk_tmp);
2018-09-10 00:44:04 +02:00
return 3;
}
2018-09-10 00:44:04 +02:00
word_count = word0 >> 25;
}
free(evp_thunk_tmp);
2018-09-10 00:44:04 +02:00
return 0;
}
bool fuse_check_patched_rcm()
{
2020-06-26 18:45:21 +03:00
// Check if XUSB in use or Tegra X1+.
if (FUSE(FUSE_RESERVED_SW) & (1<<7) || hw_get_chip_id() == GP_HIDREV_MAJOR_T210B01)
return true;
// Check if RCM is ipatched.
u32 word_count = FUSE(FUSE_FIRST_BOOTROM_PATCH_SIZE) & 0x7F;
u32 word_addr = FUSE_ARRAY_WORDS_NUM - 1;
while (word_count)
{
u32 word0 = fuse_read(word_addr);
u32 ipatch_count = (word0 >> 16) & 0xF;
for (u32 i = 0; i < ipatch_count; i++)
{
u32 word = fuse_read(word_addr - (i + 1));
u32 addr = (word >> 16) * 2;
if (addr == 0x769A)
return true;
}
word_addr -= word_count;
word_count = word0 >> 25;
}
return false;
}