TegraExplorer/source/storage/nx_emmc_bis.c
suchmememanyskill 4505217b2c Upgrade BDK
2023-07-22 18:37:52 +02:00

387 lines
11 KiB
C

/*
* eMMC BIS driver for Nintendo Switch
*
* Copyright (c) 2019 shchmue
* Copyright (c) 2019-2020 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <memory_map.h>
#include <mem/heap.h>
#include <sec/se.h>
#include "../storage/nx_emmc.h"
#include "nx_emmc_bis.h"
#include <storage/sdmmc.h>
#include <utils/types.h>
#define MAX_CLUSTER_CACHE_ENTRIES 32768
#define CLUSTER_LOOKUP_EMPTY_ENTRY 0xFFFFFFFF
#define SECTORS_PER_CLUSTER 0x20
typedef struct
{
u32 cluster_num; // index of the cluster in the partition
u32 visit_count; // used for debugging/access analysis
u8 dirty; // has been modified without writeback flag
u8 align[7];
u8 cluster[XTS_CLUSTER_SIZE]; // the cached cluster itself
} cluster_cache_t;
typedef struct
{
u8 emmc_buffer[XTS_CLUSTER_SIZE];
cluster_cache_t cluster_cache[];
} bis_cache_t;
static u8 ks_crypt = 0;
static u8 ks_tweak = 0;
static u8 cache_filled = 0;
static u32 dirty_cluster_count = 0;
static u32 cluster_cache_end_index = 0;
static emmc_part_t *system_part = NULL;
static bis_cache_t *bis_cache = (bis_cache_t *)NX_BIS_CACHE_ADDR;
static u32 *cluster_lookup_buf = NULL;
static u32 *cluster_lookup = NULL;
static bool lock_cluster_cache = false;
static void _gf256_mul_x_le(void *block)
{
u32 *pdata = (u32 *)block;
u32 carry = 0;
for (u32 i = 0; i < 4; i++)
{
u32 b = pdata[i];
pdata[i] = (b << 1) | carry;
carry = b >> 31;
}
if (carry)
pdata[0x0] ^= 0x87;
}
static int _nx_aes_xts_crypt_sec(u32 tweak_ks, u32 crypt_ks, u32 enc, u8 *tweak, bool regen_tweak, u32 tweak_exp, u32 sec, void *dst, const void *src, u32 sec_size)
{
u32 *pdst = (u32 *)dst;
u32 *psrc = (u32 *)src;
u32 *ptweak = (u32 *)tweak;
if (regen_tweak)
{
for (int i = 0xF; i >= 0; i--)
{
tweak[i] = sec & 0xFF;
sec >>= 8;
}
if (!se_aes_crypt_block_ecb(tweak_ks, 1, tweak, tweak))
return 0;
}
// tweak_exp allows us to use a saved tweak to reduce _gf256_mul_x_le calls.
for (u32 i = 0; i < (tweak_exp << 5); i++)
_gf256_mul_x_le(tweak);
u8 orig_tweak[0x10] __attribute__((aligned(4)));
memcpy(orig_tweak, tweak, 0x10);
// We are assuming a 0x10-aligned sector size in this implementation.
for (u32 i = 0; i < (sec_size >> 4); i++)
{
for (u32 j = 0; j < 4; j++)
pdst[j] = psrc[j] ^ ptweak[j];
_gf256_mul_x_le(tweak);
psrc += 4;
pdst += 4;
}
if (!se_aes_crypt_ecb(crypt_ks, enc, dst, sec_size, dst, sec_size))
return 0;
pdst = (u32 *)dst;
ptweak = (u32 *)orig_tweak;
for (u32 i = 0; i < (sec_size >> 4); i++)
{
for (u32 j = 0; j < 4; j++)
pdst[j] = pdst[j] ^ ptweak[j];
_gf256_mul_x_le(orig_tweak);
pdst += 4;
}
return 1;
}
static int nx_emmc_bis_write_block(u32 sector, u32 count, void *buff, bool force_flush)
{
if (!system_part)
return 3; // Not ready.
u8 tweak[0x10] __attribute__((aligned(4)));
u32 cluster = sector / SECTORS_PER_CLUSTER;
u32 aligned_sector = cluster * SECTORS_PER_CLUSTER;
u32 sector_index_in_cluster = sector % SECTORS_PER_CLUSTER;
u32 cluster_lookup_index = cluster_lookup[cluster];
bool is_cached = cluster_lookup_index != CLUSTER_LOOKUP_EMPTY_ENTRY;
// Write to cached cluster.
if (is_cached)
{
if (buff)
memcpy(bis_cache->cluster_cache[cluster_lookup_index].cluster + sector_index_in_cluster * NX_EMMC_BLOCKSIZE, buff, count * NX_EMMC_BLOCKSIZE);
else
buff = bis_cache->cluster_cache[cluster_lookup_index].cluster;
bis_cache->cluster_cache[cluster_lookup_index].visit_count++;
if (bis_cache->cluster_cache[cluster_lookup_index].dirty == 0)
dirty_cluster_count++;
bis_cache->cluster_cache[cluster_lookup_index].dirty = 1;
if (!force_flush)
return 0; // Success.
// Reset args to trigger a full cluster flush to emmc.
sector_index_in_cluster = 0;
sector = aligned_sector;
count = SECTORS_PER_CLUSTER;
}
// Encrypt and write.
if (!_nx_aes_xts_crypt_sec(ks_tweak, ks_crypt, 1, tweak, true, sector_index_in_cluster, cluster, bis_cache->emmc_buffer, buff, count * NX_EMMC_BLOCKSIZE) ||
!nx_emmc_part_write(&emmc_storage, system_part, sector, count, bis_cache->emmc_buffer)
)
return 1; // R/W error.
// Mark cache entry not dirty if write succeeds.
if (is_cached)
{
bis_cache->cluster_cache[cluster_lookup_index].dirty = 0;
dirty_cluster_count--;
}
return 0; // Success.
}
static void _nx_emmc_bis_flush_cluster(cluster_cache_t *cache_entry)
{
nx_emmc_bis_write_block(cache_entry->cluster_num * SECTORS_PER_CLUSTER, SECTORS_PER_CLUSTER, NULL, true);
}
static int nx_emmc_bis_read_block(u32 sector, u32 count, void *buff)
{
if (!system_part)
return 3; // Not ready.
static u32 prev_cluster = -1;
static u32 prev_sector = 0;
static u8 tweak[0x10] __attribute__((aligned(4)));
u8 cache_tweak[0x10] __attribute__((aligned(4)));
u32 tweak_exp = 0;
bool regen_tweak = true;
u32 cluster = sector / SECTORS_PER_CLUSTER;
u32 aligned_sector = cluster * SECTORS_PER_CLUSTER;
u32 sector_index_in_cluster = sector % SECTORS_PER_CLUSTER;
u32 cluster_lookup_index = cluster_lookup[cluster];
// Read from cached cluster.
if (cluster_lookup_index != CLUSTER_LOOKUP_EMPTY_ENTRY)
{
memcpy(buff, bis_cache->cluster_cache[cluster_lookup_index].cluster + sector_index_in_cluster * NX_EMMC_BLOCKSIZE, count * NX_EMMC_BLOCKSIZE);
bis_cache->cluster_cache[cluster_lookup_index].visit_count++;
prev_sector = sector + count - 1;
prev_cluster = cluster;
return 0; // Success.
}
// Cache cluster.
if (!lock_cluster_cache)
{
// Roll the cache index over and flush if full.
if (cluster_cache_end_index >= MAX_CLUSTER_CACHE_ENTRIES)
{
cluster_cache_end_index = 0;
cache_filled = 1;
}
// Check if cache entry was previously in use in case of cache loop.
if (cache_filled == 1 && bis_cache->cluster_cache[cluster_cache_end_index].dirty == 1)
_nx_emmc_bis_flush_cluster(&bis_cache->cluster_cache[cluster_cache_end_index]);
if (cache_filled == 1)
cluster_lookup[bis_cache->cluster_cache[cluster_cache_end_index].cluster_num] = -1;
bis_cache->cluster_cache[cluster_cache_end_index].cluster_num = cluster;
bis_cache->cluster_cache[cluster_cache_end_index].visit_count = 1;
bis_cache->cluster_cache[cluster_cache_end_index].dirty = 0;
cluster_lookup[cluster] = cluster_cache_end_index;
// Read and decrypt the whole cluster the sector resides in.
if (!nx_emmc_part_read(&emmc_storage, system_part, aligned_sector, SECTORS_PER_CLUSTER, bis_cache->emmc_buffer) ||
!_nx_aes_xts_crypt_sec(ks_tweak, ks_crypt, 0, cache_tweak, true, 0, cluster, bis_cache->emmc_buffer, bis_cache->emmc_buffer, XTS_CLUSTER_SIZE)
)
return 1; // R/W error.
// Copy to cluster cache.
memcpy(bis_cache->cluster_cache[cluster_cache_end_index].cluster, bis_cache->emmc_buffer, XTS_CLUSTER_SIZE);
memcpy(buff, bis_cache->emmc_buffer + sector_index_in_cluster * NX_EMMC_BLOCKSIZE, count * NX_EMMC_BLOCKSIZE);
cluster_cache_end_index++;
return 0; // Success.
}
// If not reading from or writing to cache, do a regular read and decrypt.
if (!nx_emmc_part_read(&emmc_storage, system_part, sector, count, bis_cache->emmc_buffer))
return 1; // R/W error.
if (prev_cluster != cluster) // Sector in different cluster than last read.
{
prev_cluster = cluster;
tweak_exp = sector_index_in_cluster;
}
else if (sector > prev_sector) // Sector in same cluster and past last sector.
{
// Calculates the new tweak using the saved one, reducing expensive _gf256_mul_x_le calls.
tweak_exp = sector - prev_sector - 1;
regen_tweak = false;
}
else // Sector in same cluster and before or same as last sector.
tweak_exp = sector_index_in_cluster;
// Maximum one cluster (1 XTS crypto block 16KB).
if (!_nx_aes_xts_crypt_sec(ks_tweak, ks_crypt, 0, tweak, regen_tweak, tweak_exp, prev_cluster, buff, bis_cache->emmc_buffer, count * NX_EMMC_BLOCKSIZE))
return 1; // R/W error.
prev_sector = sector + count - 1;
return 0; // Success.
}
int nx_emmc_bis_read(u32 sector, u32 count, void *buff)
{
int res = 1;
u8 *buf = (u8 *)buff;
u32 curr_sct = sector;
while (count)
{
u32 sct_cnt = MIN(count, 0x20);
res = nx_emmc_bis_read_block(curr_sct, sct_cnt, buf);
if (res)
return 1;
count -= sct_cnt;
curr_sct += sct_cnt;
buf += NX_EMMC_BLOCKSIZE * sct_cnt;
}
return res;
}
int nx_emmc_bis_write(u32 sector, u32 count, void *buff)
{
int res = 1;
u8 *buf = (u8 *)buff;
u32 curr_sct = sector;
while (count)
{
u32 sct_cnt = MIN(count, 0x20);
res = nx_emmc_bis_write_block(curr_sct, sct_cnt, buf, false);
if (res)
return 1;
count -= sct_cnt;
curr_sct += sct_cnt;
buf += NX_EMMC_BLOCKSIZE * sct_cnt;
}
nx_emmc_bis_finalize();
return res;
}
void nx_emmc_bis_cluster_cache_init()
{
u32 cluster_lookup_size = (system_part->lba_end - system_part->lba_start + 1) / SECTORS_PER_CLUSTER * sizeof(*cluster_lookup);
if (cluster_lookup_buf)
free(cluster_lookup_buf);
// Check if carveout protected, in case of old hwinit (pre 4.0.0) chainload.
*(vu32 *)NX_BIS_LOOKUP_ADDR = 0;
if (*(vu32 *)NX_BIS_LOOKUP_ADDR != 0)
{
cluster_lookup_buf = (u32 *)malloc(cluster_lookup_size + 0x2000);
cluster_lookup = (u32 *)ALIGN((u32)cluster_lookup_buf, 0x1000);
}
else
{
cluster_lookup_buf = NULL;
cluster_lookup = (u32 *)NX_BIS_LOOKUP_ADDR;
}
// Clear cluster lookup table and reset end index.
memset(cluster_lookup, -1, cluster_lookup_size);
cluster_cache_end_index = 0;
lock_cluster_cache = false;
dirty_cluster_count = 0;
cache_filled = 0;
}
void nx_emmc_bis_init(emmc_part_t *part)
{
system_part = part;
nx_emmc_bis_cluster_cache_init();
switch (part->index)
{
case 0: // PRODINFO.
case 1: // PRODINFOF.
ks_crypt = 0;
ks_tweak = 1;
break;
case 8: // SAFE.
ks_crypt = 2;
ks_tweak = 3;
break;
case 9: // SYSTEM.
case 10: // USER.
ks_crypt = 4;
ks_tweak = 5;
break;
}
}
void nx_emmc_bis_finalize()
{
if (dirty_cluster_count == 0)
return;
u32 limit = cache_filled == 1 ? MAX_CLUSTER_CACHE_ENTRIES : cluster_cache_end_index;
u32 clusters_to_flush = dirty_cluster_count;
for (u32 i = 0; i < limit && clusters_to_flush; i++)
{
if (bis_cache->cluster_cache[i].dirty) {
_nx_emmc_bis_flush_cluster(&bis_cache->cluster_cache[i]);
clusters_to_flush--;
}
}
}
// Set cluster cache lock according to arg.
void nx_emmc_bis_cache_lock(bool lock)
{
lock_cluster_cache = lock;
}