Update bdk to hekate 5.5.2

This commit is contained in:
suchmememanyskill 2021-01-12 00:30:14 +01:00
parent f730f4a08e
commit 8709e3aa2e
52 changed files with 1541 additions and 722 deletions

View file

@ -20,6 +20,7 @@
#include "di.h"
#include <power/max77620.h>
#include <power/max7762x.h>
#include <mem/heap.h>
#include <soc/clock.h>
#include <soc/gpio.h>
#include <soc/hw_init.h>
@ -170,9 +171,9 @@ int display_dsi_read(u8 cmd, u32 len, void *data, bool video_enabled)
void display_dsi_write(u8 cmd, u32 len, void *data, bool video_enabled)
{
u8 *fifo8;
u32 *fifo32;
u32 host_control;
u32 fifo32[DSI_STATUS_RX_FIFO_SIZE] = {0};
u8 *fifo8 = (u8 *)fifo32;
// Enable host cmd packets during video and save host control.
if (video_enabled)
@ -193,6 +194,8 @@ void display_dsi_write(u8 cmd, u32 len, void *data, bool video_enabled)
break;
default:
fifo32 = calloc(DSI_STATUS_RX_FIFO_SIZE * 8, 4);
fifo8 = (u8 *)fifo32;
fifo32[0] = (len << 8) | MIPI_DSI_DCS_LONG_WRITE;
fifo8[4] = cmd;
memcpy(&fifo8[5], data, len);
@ -200,6 +203,7 @@ void display_dsi_write(u8 cmd, u32 len, void *data, bool video_enabled)
for (u32 i = 0; i < (ALIGN(len, 4) / 4); i++)
DSI(_DSIREG(DSI_WR_DATA)) = fifo32[i];
DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST;
free(fifo32);
break;
}
@ -215,29 +219,30 @@ void display_dsi_write(u8 cmd, u32 len, void *data, bool video_enabled)
void display_init()
{
// Check if display is already initialized.
if (CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_SET) & BIT(CLK_L_DISP1))
if (CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_L) & BIT(CLK_L_DISP1))
_display_panel_and_hw_end(true);
// Get Chip ID.
bool tegra_t210 = hw_get_chip_id() == GP_HIDREV_MAJOR_T210;
// T210B01: Power on SD2 regulator for supplying LD0.
// T210B01: Power on SD2 regulator for supplying LDO0.
if (!tegra_t210)
{
// Set SD2 regulator voltage.
max77620_regulator_set_voltage(REGULATOR_SD2, 1325000);
max7762x_regulator_set_voltage(REGULATOR_SD2, 1325000);
// Set slew rate and enable SD2 regulator.
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_SD2_CFG, (1 << MAX77620_SD_SR_SHIFT) | MAX77620_SD_CFG1_FSRADE_SD_ENABLE);
max77620_regulator_enable(REGULATOR_SD2, 1);
max7762x_regulator_enable(REGULATOR_SD2, true);
}
// Enable power to display panel controller.
max77620_regulator_set_volt_and_flags(REGULATOR_LDO0, 1200000, MAX77620_POWER_MODE_NORMAL); // Configure to 1.2V.
max7762x_regulator_set_voltage(REGULATOR_LDO0, 1200000);
max7762x_regulator_enable(REGULATOR_LDO0, true);
if (tegra_t210)
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_GPIO7,
MAX77620_CNFG_GPIO_OUTPUT_VAL_HIGH | MAX77620_CNFG_GPIO_DRV_PUSHPULL); // T210: LD0 -> GPIO7 -> Display panel.
max77620_config_gpio(7, MAX77620_GPIO_OUTPUT_ENABLE); // T210: LD0 -> GPIO7 -> Display panel.
// Enable Display Interface specific clocks.
CLOCK(CLK_RST_CONTROLLER_RST_DEV_H_CLR) = BIT(CLK_H_MIPI_CAL) | BIT(CLK_H_DSI);
@ -293,7 +298,7 @@ void display_init()
// Set DISP1 clock source and parent clock.
CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_DISP1) = 0x40000000; // PLLD_OUT.
u32 plld_div = (3 << 20) | (20 << 11) | 1; // DIVM: 1, DIVN: 20, DIVP: 3. PLLD_OUT: 768 MHz, PLLD_OUT0 (DSI): 96 MHz.
u32 plld_div = (3 << 20) | (20 << 11) | 1; // DIVM: 1, DIVN: 20, DIVP: 3. PLLD_OUT: 768 MHz, PLLD_OUT0 (DSI): 97.5 MHz (offset).
CLOCK(CLK_RST_CONTROLLER_PLLD_BASE) = PLLCX_BASE_ENABLE | PLLCX_BASE_LOCK | plld_div;
if (tegra_t210)
@ -335,9 +340,12 @@ void display_init()
#if 0
// Get Display ID.
_display_id = 0xCCCCCC;
_display_id = 0xCCCCCC; // Set initial value. 4th byte cleared.
display_dsi_read(MIPI_DCS_GET_DISPLAY_ID, 3, &_display_id, DSI_VIDEO_DISABLED);
#else
// Drain RX FIFO.
_display_dsi_read_rx_fifo(NULL);
// Set reply size.
_display_dsi_send_cmd(MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, 3, 0);
_display_dsi_wait(250000, _DSIREG(DSI_TRIGGER), DSI_TRIGGER_HOST | DSI_TRIGGER_VIDEO);
@ -407,11 +415,11 @@ void display_init()
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_SET_DISPLAY_ON, 20000);
// Configure PLLD for DISP1.
plld_div = (1 << 20) | (24 << 11) | 1; // DIVM: 1, DIVN: 24, DIVP: 1. PLLD_OUT: 768 MHz, PLLD_OUT0 (DSI): 230.4 MHz.
plld_div = (1 << 20) | (24 << 11) | 1; // DIVM: 1, DIVN: 24, DIVP: 1. PLLD_OUT: 768 MHz, PLLD_OUT0 (DSI): 234 MHz (offset).
CLOCK(CLK_RST_CONTROLLER_PLLD_BASE) = PLLCX_BASE_ENABLE | PLLCX_BASE_LOCK | plld_div;
if (tegra_t210)
CLOCK(CLK_RST_CONTROLLER_PLLD_MISC1) = 0x20; // PLLD_SETUP
CLOCK(CLK_RST_CONTROLLER_PLLD_MISC1) = 0x20; // PLLD_SETUP.
else
CLOCK(CLK_RST_CONTROLLER_PLLD_MISC1) = 0;
CLOCK(CLK_RST_CONTROLLER_PLLD_MISC) = 0x2DFC00; // Use new PLLD_SDM_DIN.
@ -420,7 +428,7 @@ void display_init()
DSI(_DSIREG(DSI_PAD_CONTROL_1)) = 0;
DSI(_DSIREG(DSI_PHY_TIMING_0)) = tegra_t210 ? 0x6070601 : 0x6070603;
exec_cfg((u32 *)DSI_BASE, _display_dsi_packet_config, 19);
// Set pixel clock dividers: 230.4 / 3 / 1 = 76.8 MHz. 60 Hz.
// Set pixel clock dividers: 234 / 3 / 1 = 78 MHz (offset) for 60 Hz.
DISPLAY_A(_DIREG(DC_DISP_DISP_CLOCK_CONTROL)) = PIXEL_CLK_DIVIDER_PCD1 | SHIFT_CLK_DIVIDER(4); // 4: div3.
exec_cfg((u32 *)DSI_BASE, _display_dsi_mode_config, 10);
usleep(10000);
@ -600,11 +608,20 @@ skip_panel_deinit:
void display_end() { _display_panel_and_hw_end(false); };
u16 display_get_decoded_lcd_id()
u16 display_get_decoded_panel_id()
{
return _display_id;
}
void display_set_decoded_panel_id(u32 id)
{
// Decode Display ID.
_display_id = ((id >> 8) & 0xFF00) | (id & 0xFF);
if ((_display_id & 0xFF) == PANEL_JDI_XXX062M)
_display_id = PANEL_JDI_XXX062M;
}
void display_color_screen(u32 color)
{
exec_cfg((u32 *)DISPLAY_A_BASE, cfg_display_one_color, 8);

View file

@ -651,6 +651,7 @@
* [10] 96 [09]: JDI LAM062M109A
* [20] 93 [0F]: InnoLux P062CCA-AZ1 (Rev A1)
* [20] 95 [0F]: InnoLux P062CCA-AZ2
* [20] 96 [0F]: InnoLux P062CCA-AZ3
* [30] 94 [0F]: AUO A062TAN01 (59.06A33.001)
* [30] 95 [0F]: AUO A062TAN02 (59.06A33.002)
*
@ -671,10 +672,12 @@
* 20h: InnoLux Corporation
* 30h: AU Optronics
* 40h: Unknown1
* 50h: Unknown2 (OLED? Samsung? LG?)
*
* Boards, Panel Size:
* 0Fh: Icosa/Iowa, 6.2"
* 10h: Hoag, 5.5"
* 20h: Unknown, x.x"
*/
enum
@ -693,8 +696,9 @@ void display_init();
void display_backlight_pwm_init();
void display_end();
/*! Get Display panel ID. */
u16 display_get_decoded_lcd_id();
/*! Get/Set Display panel ID. */
u16 display_get_decoded_panel_id();
void display_set_decoded_panel_id(u32 id);
/*! Show one single color on the display. */
void display_color_screen(u32 color);

View file

@ -17,7 +17,6 @@
*/
#include "als.h"
#include <power/max77620.h>
#include <power/max7762x.h>
#include <soc/clock.h>
#include <soc/i2c.h>
@ -98,14 +97,16 @@ void get_als_lux(als_table_t *als_val)
u8 als_init(als_table_t *als_val)
{
// Enable power to ALS IC.
max7762x_regulator_set_voltage(REGULATOR_LDO6, 2900000);
max7762x_regulator_enable(REGULATOR_LDO6, true);
// Init I2C2.
pinmux_config_i2c(I2C_2);
clock_enable_i2c(I2C_2);
i2c_init(I2C_2);
max77620_regulator_set_volt_and_flags(REGULATOR_LDO6, 2900000, MAX77620_POWER_MODE_NORMAL);
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_LDO6_CFG2,
(MAX77620_POWER_MODE_NORMAL << MAX77620_LDO_POWER_MODE_SHIFT | (3 << 3) | MAX77620_LDO_CFG2_ADE_ENABLE));
// Initialize ALS.
u8 id = i2c_recv_byte(I2C_2, BH1730_I2C_ADDR, BH1730_ADDR(0x12));
i2c_send_byte(I2C_2, BH1730_I2C_ADDR, BH1730_SPEC(BH1730_SPECCMD_RESET), 0);
i2c_send_byte(I2C_2, BH1730_I2C_ADDR, BH1730_ADDR(BH1730_GAIN_REG), HOS_GAIN);

View file

@ -39,6 +39,9 @@
#define JC_WIRED_INIT_REPLY 0x94
#define JC_INIT_HANDSHAKE 0xA5
#define JC_HORI_INPUT_RPT_CMD 0x9A
#define JC_HORI_INPUT_RPT 0x00
#define JC_WIRED_CMD_MAC 0x01
#define JC_WIRED_CMD_10 0x10
@ -61,8 +64,12 @@
#define JC_BTN_MASK_L 0xFF2900 // 0xFFE900: with charge status.
#define JC_BTN_MASK_R 0x0056FF
#define JC_ID_L 1
#define JC_ID_R 2
#define JC_ID_L 0x01
#define JC_ID_R 0x02
#define JC_ID_HORI 0x20
#define JC_CRC8_INIT 0x00
#define JC_CRC8_POLY 0x8D
enum
{
@ -80,25 +87,31 @@ static const u8 init_jc[] = {
static const u8 init_handshake[] = {
0x19, 0x01, 0x03, 0x07, 0x00, // Uart header.
JC_INIT_HANDSHAKE, 0x02, // Wired cmd and wired subcmd.
0x01, 0x7E, 0x00, 0x00, 0x00 // Wired subcmd data.
0x01, 0x7E, 0x00, 0x00, 0x00 // Wired subcmd data and crc.
};
static const u8 init_get_info[] = {
0x19, 0x01, 0x03, 0x07, 0x00, // Uart header.
JC_WIRED_CMD, JC_WIRED_CMD_MAC, // Wired cmd and subcmd.
0x00, 0x00, 0x00, 0x00, 0x24 // Wired subcmd data.
0x00, 0x00, 0x00, 0x00, 0x24 // Wired subcmd data and crc.
};
static const u8 init_finilize[] = {
static const u8 init_finalize[] = {
0x19, 0x01, 0x03, 0x07, 0x00, // Uart header.
JC_WIRED_CMD, JC_WIRED_CMD_10, // Wired cmd and subcmd.
0x00, 0x00, 0x00, 0x00, 0x3D // Wired subcmd data.
0x00, 0x00, 0x00, 0x00, 0x3D // Wired subcmd data and crc.
};
static const u8 nx_pad_status[] = {
0x19, 0x01, 0x03, 0x08, 0x00, // Uart header.
JC_WIRED_HID, 0x00, // Wired cmd and hid cmd.
0x01, 0x00, 0x00, 0x69, 0x2D, 0x1F // hid data.
0x01, 0x00, 0x00, 0x69, 0x2D, 0x1F // hid data and crc.
};
static const u8 hori_pad_status[] = {
0x19, 0x01, 0x03, 0x07, 0x00, // Uart header.
JC_HORI_INPUT_RPT_CMD, 0x01, // Hori cmd and hori subcmd.
0x00, 0x00, 0x00, 0x00, 0x48 // Hori cmd data and crc.
};
typedef struct _jc_uart_hdr_t
@ -185,8 +198,8 @@ typedef struct _joycon_ctxt_t
u8 connected;
} joycon_ctxt_t;
static joycon_ctxt_t jc_l;
static joycon_ctxt_t jc_r;
static joycon_ctxt_t jc_l = {0};
static joycon_ctxt_t jc_r = {0};
static bool jc_init_done = false;
static u32 hid_pkt_inc = 0;
@ -195,13 +208,29 @@ static jc_gamepad_rpt_t jc_gamepad;
void jc_power_supply(u8 uart, bool enable);
static u8 jc_crc(u8 *data, u16 len)
{
u8 crc = JC_CRC8_INIT;
u16 i, j;
for (i = 0; i < len; i++) {
crc ^= data[i];
for (j = 0; j < 8; j++) {
if ((crc & 0x80) != 0)
crc = (u8)((crc << 1) ^ JC_CRC8_POLY);
else
crc <<= 1;
}
}
return crc;
}
void joycon_send_raw(u8 uart_port, const u8 *buf, u16 size)
{
uart_send(uart_port, buf, size);
uart_wait_idle(uart_port, UART_TX_IDLE);
}
static u16 jc_packet_add_uart_hdr(jc_wired_hdr_t *out, u8 wired_cmd, u8 *data, u16 size)
static u16 jc_packet_add_uart_hdr(jc_wired_hdr_t *out, u8 wired_cmd, u8 *data, u16 size, bool crc)
{
out->uart_hdr.magic[0] = 0x19;
out->uart_hdr.magic[1] = 0x01;
@ -214,14 +243,14 @@ static u16 jc_packet_add_uart_hdr(jc_wired_hdr_t *out, u8 wired_cmd, u8 *data, u
if (data)
memcpy(out->data, data, size);
out->crc = 0; // wired crc8ccit can be skipped.
out->crc = crc ? jc_crc(&out->uart_hdr.total_size_msb, sizeof(out->uart_hdr.total_size_msb) + sizeof(out->cmd) + sizeof(out->data)) : 0;
return sizeof(jc_wired_hdr_t);
}
static u16 jc_hid_output_rpt_craft(jc_wired_hdr_t *rpt, u8 *payload, u16 size)
static u16 jc_hid_output_rpt_craft(jc_wired_hdr_t *rpt, u8 *payload, u16 size, bool crc)
{
u16 pkt_size = jc_packet_add_uart_hdr(rpt, JC_WIRED_HID, NULL, 0);
u16 pkt_size = jc_packet_add_uart_hdr(rpt, JC_WIRED_HID, NULL, 0, crc);
pkt_size += size;
rpt->uart_hdr.total_size_lsb += size;
@ -234,12 +263,12 @@ static u16 jc_hid_output_rpt_craft(jc_wired_hdr_t *rpt, u8 *payload, u16 size)
return pkt_size;
}
void jc_send_hid_output_rpt(u8 uart, u8 *payload, u16 size)
void jc_send_hid_output_rpt(u8 uart, u8 *payload, u16 size, bool crc)
{
u8 rpt[0x50];
memset(rpt, 0, sizeof(rpt));
u32 rpt_size = jc_hid_output_rpt_craft((jc_wired_hdr_t *)rpt, payload, size);
u32 rpt_size = jc_hid_output_rpt_craft((jc_wired_hdr_t *)rpt, payload, size, crc);
joycon_send_raw(uart, rpt, rpt_size);
}
@ -275,18 +304,18 @@ void jc_send_hid_cmd(u8 uart, u8 subcmd, u8 *data, u16 size)
hid_pkt->subcmd = JC_HID_SUBCMD_RUMBLE_CTL;
hid_pkt->subcmd_data[0] = 1;
if (send_r_rumble)
jc_send_hid_output_rpt(UART_B, (u8 *)hid_pkt, 0x10);
jc_send_hid_output_rpt(UART_B, (u8 *)hid_pkt, 0x10, false);
if (send_l_rumble)
jc_send_hid_output_rpt(UART_C, (u8 *)hid_pkt, 0x10);
jc_send_hid_output_rpt(UART_C, (u8 *)hid_pkt, 0x10, false);
// Send rumble.
hid_pkt->cmd = JC_HID_RUMBLE_RPT;
hid_pkt->pkt_id = jc_hid_pkt_id_incr();
memcpy(hid_pkt->rumble, rumble_init, sizeof(rumble_init));
if (send_r_rumble)
jc_send_hid_output_rpt(UART_B, (u8 *)hid_pkt, 10);
jc_send_hid_output_rpt(UART_B, (u8 *)hid_pkt, 10, false);
if (send_l_rumble)
jc_send_hid_output_rpt(UART_C, (u8 *)hid_pkt, 10);
jc_send_hid_output_rpt(UART_C, (u8 *)hid_pkt, 10, false);
msleep(15);
@ -297,21 +326,21 @@ void jc_send_hid_cmd(u8 uart, u8 subcmd, u8 *data, u16 size)
hid_pkt->subcmd_data[0] = 0;
memcpy(hid_pkt->rumble, rumble_neutral, sizeof(rumble_neutral));
if (send_r_rumble)
jc_send_hid_output_rpt(UART_B, (u8 *)hid_pkt, 0x10);
jc_send_hid_output_rpt(UART_B, (u8 *)hid_pkt, 0x10, false);
if (send_l_rumble)
jc_send_hid_output_rpt(UART_C, (u8 *)hid_pkt, 0x10);
jc_send_hid_output_rpt(UART_C, (u8 *)hid_pkt, 0x10, false);
}
else
{
bool crc_needed = (jc_l.uart == uart) ? (jc_l.type & JC_ID_HORI) : (jc_r.type & JC_ID_HORI);
hid_pkt->cmd = JC_HID_OUTPUT_RPT;
hid_pkt->pkt_id = jc_hid_pkt_id_incr();
hid_pkt->subcmd = subcmd;
if (data)
memcpy(hid_pkt->subcmd_data, data, size);
u8 pkt_size = sizeof(jc_hid_out_rpt_t) + size;
jc_send_hid_output_rpt(uart, (u8 *)hid_pkt, pkt_size);
jc_send_hid_output_rpt(uart, (u8 *)hid_pkt, sizeof(jc_hid_out_rpt_t) + size, crc_needed);
}
}
@ -333,6 +362,7 @@ static void jc_parse_wired_hid(joycon_ctxt_t *jc, const u8* packet, u32 size)
switch (hid_pkt->cmd)
{
case JC_HORI_INPUT_RPT:
case JC_HID_INPUT_RPT:
btn_tmp = hid_pkt->btn_right | hid_pkt->btn_shared << 8 | hid_pkt->btn_left << 16;
@ -412,6 +442,7 @@ static void jc_uart_pkt_parse(joycon_ctxt_t *jc, const u8* packet, size_t size)
jc_wired_hdr_t *pkt = (jc_wired_hdr_t *)packet;
switch (pkt->cmd)
{
case JC_HORI_INPUT_RPT_CMD:
case JC_WIRED_HID:
jc_parse_wired_hid(jc, pkt->payload, (pkt->data[0] << 8) | pkt->data[1]);
break;
@ -474,10 +505,15 @@ static bool jc_send_init_rumble(joycon_ctxt_t *jc)
static void jc_req_nx_pad_status(joycon_ctxt_t *jc)
{
bool sent_rumble = jc_send_init_rumble(jc);
bool is_nxpad = !(jc->type & JC_ID_HORI);
if (sent_rumble)
return;
if (is_nxpad)
{
bool sent_rumble = jc_send_init_rumble(jc);
if (sent_rumble)
return;
}
if (jc->last_status_req_time > get_tmr_ms() || !jc->connected)
return;
@ -488,7 +524,10 @@ static void jc_req_nx_pad_status(joycon_ctxt_t *jc)
else
gpio_config(GPIO_PORT_D, GPIO_PIN_1, GPIO_MODE_SPIO);
joycon_send_raw(jc->uart, nx_pad_status, sizeof(nx_pad_status));
if (is_nxpad)
joycon_send_raw(jc->uart, nx_pad_status, sizeof(nx_pad_status));
else
joycon_send_raw(jc->uart, hori_pad_status, sizeof(hori_pad_status));
// Turn Joy-Con detect on.
if (jc->uart == UART_B)
@ -660,12 +699,12 @@ void jc_deinit()
u8 data = HCI_STATE_SLEEP;
if (jc_r.connected)
if (jc_r.connected && !(jc_r.type & JC_ID_HORI))
{
jc_send_hid_cmd(UART_B, JC_HID_SUBCMD_HCI_STATE, &data, 1);
jc_rcv_pkt(&jc_r);
}
if (jc_l.connected)
if (jc_l.connected && !(jc_l.type & JC_ID_HORI))
{
jc_send_hid_cmd(UART_C, JC_HID_SUBCMD_HCI_STATE, &data, 1);
jc_rcv_pkt(&jc_l);
@ -709,9 +748,12 @@ static void jc_init_conn(joycon_ctxt_t *jc)
msleep(5);
jc_rcv_pkt(jc);
joycon_send_raw(jc->uart, init_finilize, sizeof(init_finilize));
msleep(5);
jc_rcv_pkt(jc);
if (!(jc->type & JC_ID_HORI))
{
joycon_send_raw(jc->uart, init_finalize, sizeof(init_finalize));
msleep(5);
jc_rcv_pkt(jc);
}
// Turn Joy-Con detect on.
if (jc->uart == UART_B)
@ -766,10 +808,10 @@ void jc_power_supply(u8 uart, bool enable)
{
if (enable)
{
if (regulator_get_5v_dev_enabled(1 << uart))
if (regulator_5v_get_dev_enabled(1 << uart))
return;
regulator_enable_5v(1 << uart);
regulator_5v_enable(1 << uart);
if (jc_init_done)
{
@ -799,10 +841,10 @@ void jc_power_supply(u8 uart, bool enable)
}
else
{
if (!regulator_get_5v_dev_enabled(1 << uart))
if (!regulator_5v_get_dev_enabled(1 << uart))
return;
regulator_disable_5v(1 << uart);
regulator_5v_disable(1 << uart);
if (uart == UART_C)
gpio_write(GPIO_PORT_CC, GPIO_PIN_3, GPIO_LOW);
@ -816,10 +858,10 @@ void jc_init_hw()
jc_l.uart = UART_C;
jc_r.uart = UART_B;
#if !defined(DEBUG_UART_PORT) || !(DEBUG_UART_PORT)
if (fuse_read_hw_type() == FUSE_NX_HW_TYPE_HOAG)
return;
#ifndef DEBUG_UART_PORT
jc_power_supply(UART_C, true);
jc_power_supply(UART_B, true);

View file

@ -23,7 +23,6 @@
#include <soc/i2c.h>
#include <soc/pinmux.h>
#include <power/max7762x.h>
#include <power/max77620.h>
#include <soc/gpio.h>
#include <soc/t210.h>
#include <utils/btn.h>
@ -34,6 +33,16 @@
#include <gfx_utils.h>
#define DPRINTF(...) gfx_printf(__VA_ARGS__)
static touch_panel_info_t _panels[] =
{
{ 0, 1, 1, 1, "NISSHA NFT-K12D" },
{ 1, 0, 1, 1, "GiS GGM6 B2X" },
{ 2, 0, 0, 0, "NISSHA NBF-K9A" },
{ 3, 1, 0, 0, "GiS 5.5\"" },
{ 4, 0, 0, 1, "Unknown" },
{ -1, 1, 0, 1, "GiS VA 6.2\"" }
};
static int touch_command(u8 cmd, u8 *buf, u8 size)
{
int res = i2c_send_buf_small(I2C_3, STMFTS_I2C_ADDR, cmd, buf, size);
@ -53,7 +62,7 @@ static int touch_read_reg(u8 *cmd, u32 csize, u8 *buf, u32 size)
return 0;
}
static int touch_wait_event(u8 event, u8 status, u32 timeout)
static int touch_wait_event(u8 event, u8 status, u32 timeout, u8 *buf)
{
u32 timer = get_tmr_ms() + timeout;
while (true)
@ -61,7 +70,11 @@ static int touch_wait_event(u8 event, u8 status, u32 timeout)
u8 tmp[8] = {0};
i2c_recv_buf_small(tmp, 8, I2C_3, STMFTS_I2C_ADDR, STMFTS_READ_ONE_EVENT);
if (tmp[1] == event && tmp[2] == status)
{
if (buf)
memcpy(buf, &tmp[3], 5);
return 0;
}
if (get_tmr_ms() > timer)
return 1;
@ -147,10 +160,10 @@ static void _touch_parse_event(touch_event *event)
event->type = STMFTS_EV_MULTI_TOUCH_LEAVE;
}
// gfx_con_setpos(&gfx_con, 0, 300);
// gfx_con_setpos(0, 300);
// DPRINTF("x = %d \ny = %d \nz = %d \n", event->x, event->y, event->z);
// DPRINTF("0 = %02X\n1 = %02x\n2 = %02x\n3 = %02x\n", event->raw[0], event->raw[1], event->raw[2], event->raw[3]);
// DPRINTF("4 = %02X\n5 = %02x\n6 = %02x\n7 = %02x\n", event->raw[4], event->raw[5], event->raw[6], event->raw[7]);
// DPRINTF("0 = %02X\n1 = %02X\n2 = %02X\n3 = %02X\n", event->raw[0], event->raw[1], event->raw[2], event->raw[3]);
// DPRINTF("4 = %02X\n5 = %02X\n6 = %02X\n7 = %02X\n", event->raw[4], event->raw[5], event->raw[6], event->raw[7]);
}
void touch_poll(touch_event *event)
@ -183,12 +196,33 @@ touch_info touch_get_info()
info.config_id = buf[4];
info.config_ver = buf[5];
//DPRINTF("ID: %04X, FW Ver: %d.%02d\nCfg ID: %02x, Cfg Ver: %d\n",
//DPRINTF("ID: %04X, FW Ver: %d.%02d\nCfg ID: %02X, Cfg Ver: %d\n",
// info.chip_id, info.fw_ver >> 8, info.fw_ver & 0xFF, info.config_id, info.config_ver);
return info;
}
touch_panel_info_t *touch_get_panel_vendor()
{
u8 buf[5] = {0};
u8 cmd = STMFTS_VENDOR_GPIO_STATE;
if (touch_command(STMFTS_VENDOR, &cmd, 1))
return NULL;
if (touch_wait_event(STMFTS_EV_VENDOR, STMFTS_VENDOR_GPIO_STATE, 2000, buf))
return NULL;
for (u32 i = 0; i < ARRAY_SIZE(_panels); i++)
{
touch_panel_info_t *panel = &_panels[i];
if (buf[0] == panel->gpio0 && buf[1] == panel->gpio1 && buf[2] == panel->gpio2)
return panel;
}
return NULL;
}
int touch_get_fw_info(touch_fw_info_t *fw)
{
u8 buf[8] = {0};
@ -227,7 +261,7 @@ int touch_sys_reset()
continue;
}
msleep(10);
if (touch_wait_event(STMFTS_EV_CONTROLLER_READY, 0, 20))
if (touch_wait_event(STMFTS_EV_CONTROLLER_READY, 0, 20, NULL))
continue;
else
return 0;
@ -301,9 +335,9 @@ int touch_get_fb_info(u8 *buf)
int touch_sense_enable()
{
// Enable auto tuning calibration and multi-touch sensing.
u8 cmd = 1;
if (touch_command(STMFTS_AUTO_CALIBRATION, &cmd, 1))
// Switch sense mode and enable multi-touch sensing.
u8 cmd = STMFTS_FINGER_MODE;
if (touch_command(STMFTS_SWITCH_SENSE_MODE, &cmd, 1))
return 0;
if (touch_command(STMFTS_MS_MT_SENSE_ON, NULL, 0))
@ -329,19 +363,19 @@ int touch_execute_autotune()
// Apply Mutual Sense Compensation tuning.
if (touch_command(STMFTS_MS_CX_TUNING, NULL, 0))
return 0;
if (touch_wait_event(STMFTS_EV_STATUS, STMFTS_EV_STATUS_MS_CX_TUNING_DONE, 2000))
if (touch_wait_event(STMFTS_EV_STATUS, STMFTS_EV_STATUS_MS_CX_TUNING_DONE, 2000, NULL))
return 0;
// Apply Self Sense Compensation tuning.
if (touch_command(STMFTS_SS_CX_TUNING, NULL, 0))
return 0;
if (touch_wait_event(STMFTS_EV_STATUS, STMFTS_EV_STATUS_SS_CX_TUNING_DONE, 2000))
if (touch_wait_event(STMFTS_EV_STATUS, STMFTS_EV_STATUS_SS_CX_TUNING_DONE, 2000, NULL))
return 0;
// Save Compensation data to EEPROM.
if (touch_command(STMFTS_SAVE_CX_TUNING, NULL, 0))
return 0;
if (touch_wait_event(STMFTS_EV_STATUS, STMFTS_EV_STATUS_WRITE_CX_TUNE_DONE, 2000))
if (touch_wait_event(STMFTS_EV_STATUS, STMFTS_EV_STATUS_WRITE_CX_TUNE_DONE, 2000, NULL))
return 0;
return touch_sense_enable();
@ -358,10 +392,9 @@ static int touch_init()
int touch_power_on()
{
// Enables LDO6 for touchscreen VDD/AVDD supply
max77620_regulator_set_volt_and_flags(REGULATOR_LDO6, 2900000, MAX77620_POWER_MODE_NORMAL);
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_LDO6_CFG2,
(MAX77620_POWER_MODE_NORMAL << MAX77620_LDO_POWER_MODE_SHIFT | (3 << 3) | MAX77620_LDO_CFG2_ADE_ENABLE));
// Enable LDO6 for touchscreen VDD/AVDD supply.
max7762x_regulator_set_voltage(REGULATOR_LDO6, 2900000);
max7762x_regulator_enable(REGULATOR_LDO6, true);
// Configure touchscreen GPIO.
PINMUX_AUX(PINMUX_AUX_DAP4_SCLK) = PINMUX_PULL_DOWN | 1;
@ -385,7 +418,7 @@ int touch_power_on()
i2c_init(I2C_3);
// Wait for the touchscreen module to get ready.
touch_wait_event(STMFTS_EV_CONTROLLER_READY, 0, 20);
touch_wait_event(STMFTS_EV_CONTROLLER_READY, 0, 20, NULL);
// Check for forced boot time calibration.
if (btn_read_vol() == (BTN_VOL_UP | BTN_VOL_DOWN))
@ -414,9 +447,7 @@ void touch_power_off()
gpio_write(GPIO_PORT_J, GPIO_PIN_7, GPIO_LOW);
// Disables LDO6 for touchscreen VDD, AVDD supply
max77620_regulator_enable(REGULATOR_LDO6, 0);
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_LDO6_CFG2,
MAX77620_LDO_CFG2_ADE_ENABLE | (2 << 3) | (MAX77620_POWER_MODE_NORMAL << MAX77620_LDO_POWER_MODE_SHIFT));
max7762x_regulator_enable(REGULATOR_LDO6, false);
clock_disable_i2c(I2C_3);
}

View file

@ -47,19 +47,26 @@
#define STMFTS_ITO_CHECK 0xA7
#define STMFTS_RELEASEINFO 0xAA
#define STMFTS_WRITE_REG 0xB6
#define STMFTS_AUTO_CALIBRATION 0xC3
#define STMFTS_SWITCH_SENSE_MODE 0xC3
#define STMFTS_NOISE_WRITE 0xC7
#define STMFTS_NOISE_READ 0xC8
#define STMFTS_RW_FRAMEBUFFER_REG 0xD0
#define STMFTS_SAVE_CX_TUNING 0xFC
#define STMFTS_UNK0 0xB8 //Request compensation
#define STMFTS_UNK1 0xCF
#define STMFTS_UNK2 0xF7
#define STMFTS_UNK3 0xFA
#define STMFTS_UNK4 0xF9
#define STMFTS_REQU_COMP_DATA 0xB8
#define STMFTS_VENDOR 0xCF
#define STMFTS_FLASH_UNLOCK 0xF7
#define STMFTS_FLASH_WRITE_64K 0xF8
#define STMFTS_FLASH_STATUS 0xF9
#define STMFTS_FLASH_OP 0xFA
#define STMFTS_UNK5 0x62
/* cmd parameters */
#define STMFTS_VENDOR_GPIO_STATE 0x01
#define STMFTS_VENDOR_SENSE_MODE 0x02
#define STMFTS_STYLUS_MODE 0x00
#define STMFTS_FINGER_MODE 0x01
#define STMFTS_HOVER_MODE 0x02
/* events */
#define STMFTS_EV_NO_EVENT 0x00
@ -74,6 +81,7 @@
#define STMFTS_EV_ERROR 0x0f
#define STMFTS_EV_NOISE_READ 0x17
#define STMFTS_EV_NOISE_WRITE 0x18
#define STMFTS_EV_VENDOR 0x20
#define STMFTS_EV_CONTROLLER_READY 0x10
#define STMFTS_EV_STATUS 0x16
@ -131,6 +139,15 @@ typedef struct _touch_event {
bool touch;
} touch_event;
typedef struct _touch_panel_info_t
{
u8 idx;
u8 gpio0;
u8 gpio1;
u8 gpio2;
char *vendor;
} touch_panel_info_t;
typedef struct _touch_info {
u16 chip_id;
u16 fw_ver;
@ -146,6 +163,7 @@ typedef struct _touch_fw_info_t {
void touch_poll(touch_event *event);
touch_event touch_poll_wait();
touch_panel_info_t *touch_get_panel_vendor();
int touch_get_fw_info(touch_fw_info_t *fw);
touch_info touch_get_info();
int touch_panel_ito_test(u8 *err);

View file

@ -1,6 +1,6 @@
/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018 CTCaer
* Copyright (c) 2018-2020 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
@ -20,6 +20,8 @@
#include <soc/clock.h>
#include <utils/util.h>
//#define CONFIG_ENABLE_AHB_REDIRECT
void mc_config_tsec_carveout(u32 bom, u32 size1mb, bool lock)
{
MC(MC_SEC_CARVEOUT_BOM) = bom;
@ -143,17 +145,19 @@ void mc_disable_ahb_redirect()
void mc_enable()
{
// Reset EMC source to PLLP.
CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_EMC) = (CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_EMC) & 0x1FFFFFFF) | 0x40000000;
// Enable memory clocks.
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_H_SET) = (CLOCK(CLK_RST_CONTROLLER_CLK_ENB_H_SET) & ~BIT(CLK_H_EMC)) | BIT(CLK_H_EMC);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_H_SET) = (CLOCK(CLK_RST_CONTROLLER_CLK_ENB_H_SET) & ~BIT(CLK_H_MEM)) | BIT(CLK_H_MEM);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_X_SET) = (CLOCK(CLK_RST_CONTROLLER_CLK_ENB_X_SET) & ~BIT(CLK_X_EMC_DLL)) | BIT(CLK_X_EMC_DLL);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_H_SET) = BIT(CLK_H_EMC);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_H_SET) = BIT(CLK_H_MEM);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_X_SET) = BIT(CLK_X_EMC_DLL);
// Clear clock resets for memory.
CLOCK(CLK_RST_CONTROLLER_RST_DEV_H_CLR) = BIT(CLK_H_EMC) | BIT(CLK_H_MEM);
usleep(5);
//#ifdef CONFIG_ENABLE_AHB_REDIRECT
#ifdef CONFIG_ENABLE_AHB_REDIRECT
mc_enable_ahb_redirect();
#else
mc_disable_ahb_redirect();
//mc_enable_ahb_redirect();
//#endif
#endif
}

View file

@ -60,7 +60,7 @@ u32 minerva_init()
mtc_config_t mtc_tmp;
mtc_tmp.mtc_table = mtc_cfg->mtc_table;
mtc_tmp.sdram_id = (fuse_read_odm(4) >> 3) & 0x1F;
mtc_tmp.sdram_id = fuse_read_dramid(false);
mtc_tmp.init_done = MTC_NEW_MAGIC;
u32 ep_addr = ianos_loader("bootloader/sys/libsys_minerva.bso", DRAM_LIB, (void *)&mtc_tmp);
@ -81,7 +81,7 @@ u32 minerva_init()
// Set table to nyx storage.
mtc_cfg->mtc_table = (emc_table_t *)nyx_str->mtc_table;
mtc_cfg->sdram_id = (fuse_read_odm(4) >> 3) & 0x1F;
mtc_cfg->sdram_id = fuse_read_dramid(false);
mtc_cfg->init_done = MTC_NEW_MAGIC; // Initialize mtc table.
u32 ep_addr = ianos_loader("bootloader/sys/libsys_minerva.bso", DRAM_LIB, (void *)mtc_cfg);
@ -129,6 +129,7 @@ void minerva_change_freq(minerva_freq_t freq)
if (!minerva_cfg)
return;
// Check if requested frequency is different. Do not allow otherwise because it will hang.
mtc_config_t *mtc_cfg = (mtc_config_t *)&nyx_str->mtc_cfg;
if (mtc_cfg->rate_from != freq)
{

View file

@ -54,11 +54,6 @@ typedef struct _sdram_vendor_patch_t
#include "sdram_config_t210b01.inl"
static u32 _sdram_get_id()
{
return ((fuse_read_odm(4) & 0xF8) >> 3);
}
static bool _sdram_wait_emc_status(u32 reg_offset, u32 bit_mask, bool updated_state, s32 emc_channel)
{
bool err = true;
@ -1374,9 +1369,7 @@ static void _sdram_patch_model_params_t210b01(u32 dramid, u32 *params)
static void *_sdram_get_params_t210()
{
// Check if id is proper.
u32 dramid = _sdram_get_id();
if (dramid > 6)
dramid = 0;
u32 dramid = fuse_read_dramid(false);
#ifdef CONFIG_SDRAM_COMPRESS_CFG
@ -1413,9 +1406,7 @@ static void *_sdram_get_params_t210()
void *sdram_get_params_t210b01()
{
// Check if id is proper.
u32 dramid = _sdram_get_id();
if (dramid > 27)
dramid = 8;
u32 dramid = fuse_read_dramid(false);
u32 *buf = (u32 *)SDRAM_PARAMS_ADDR;
memcpy(buf, &_dram_cfg_08_10_12_14_samsung_hynix_4gb, sizeof(sdram_params_t210b01_t));
@ -1439,12 +1430,12 @@ void *sdram_get_params_t210b01()
case LPDDR4X_HOAG_4GB_SAMSUNG_1Y_X:
case LPDDR4X_IOWA_4GB_SAMSUNG_1Y_Y:
case LPDDR4X_IOWA_8GB_SAMSUNG_1Y_Y:
case LPDDR4X_SDS_4GB_SAMSUNG_1Y_A:
case LPDDR4X_SDS_8GB_SAMSUNG_1Y_X:
case LPDDR4X_SDS_4GB_SAMSUNG_1Y_X:
case LPDDR4X_AULA_4GB_SAMSUNG_1Y_A:
case LPDDR4X_AULA_8GB_SAMSUNG_1Y_X:
case LPDDR4X_AULA_4GB_SAMSUNG_1Y_X:
case LPDDR4X_IOWA_4GB_MICRON_1Y_A:
case LPDDR4X_HOAG_4GB_MICRON_1Y_A:
case LPDDR4X_SDS_4GB_MICRON_1Y_A:
case LPDDR4X_AULA_4GB_MICRON_1Y_A:
_sdram_patch_model_params_t210b01(dramid, (u32 *)buf);
break;
}
@ -1494,7 +1485,7 @@ static void _sdram_init_t210()
const sdram_params_t210_t *params = (const sdram_params_t210_t *)_sdram_get_params_t210();
// Set DRAM voltage.
max77620_regulator_set_voltage(REGULATOR_SD1, 1100000);
max7762x_regulator_set_voltage(REGULATOR_SD1, 1100000);
// VDDP Select.
PMC(APBDEV_PMC_VDDP_SEL) = params->pmc_vddp_sel;
@ -1539,8 +1530,8 @@ static void _sdram_init_t210b01()
void sdram_init()
{
// Configure SD regulator for DRAM.
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_SD_CFG2, 0x05);
// Disable remote sense for SD1.
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_SD_CFG2, MAX77620_SD_CNF2_ROVS_EN_SD0 | MAX77620_SD_CNF2_RSVD);
if (hw_get_chip_id() == GP_HIDREV_MAJOR_T210)
_sdram_init_t210();

View file

@ -45,7 +45,7 @@ enum sdram_ids_erista
LPDDR4_ICOSA_4GB_SAMSUNG_K4F6E304HB_MGCH = 0,
LPDDR4_ICOSA_4GB_HYNIX_H9HCNNNBPUMLHR_NLE = 1,
LPDDR4_ICOSA_4GB_MICRON_MT53B512M32D2NP_062_WT = 2,
LPDDR4_COPPER_4GB_SAMSUNG_K4F6E304HB_MGCH = 3,
LPDDR4_COPPER_4GB_SAMSUNG_K4F6E304HB_MGCH = 3, // Changed to AULA Hynix 4GB 1Y-A.
LPDDR4_ICOSA_6GB_SAMSUNG_K4FHE3D4HM_MGCH = 4,
LPDDR4_COPPER_4GB_HYNIX_H9HCNNNBPUMLHR_NLE = 5,
LPDDR4_COPPER_4GB_MICRON_MT53B512M32D2NP_062_WT = 6,
@ -76,14 +76,14 @@ enum sdram_ids_mariko
LPDDR4X_IOWA_4GB_SAMSUNG_1Y_Y = 20,
LPDDR4X_IOWA_8GB_SAMSUNG_1Y_Y = 21,
LPDDR4X_SDS_4GB_SAMSUNG_1Y_A = 22,
LPDDR4X_AULA_4GB_SAMSUNG_1Y_A = 22,
LPDDR4X_SDS_8GB_SAMSUNG_1Y_X = 23,
LPDDR4X_SDS_4GB_SAMSUNG_1Y_X = 24,
LPDDR4X_AULA_8GB_SAMSUNG_1Y_X = 23,
LPDDR4X_AULA_4GB_SAMSUNG_1Y_X = 24,
LPDDR4X_IOWA_4GB_MICRON_1Y_A = 25,
LPDDR4X_HOAG_4GB_MICRON_1Y_A = 26,
LPDDR4X_SDS_4GB_MICRON_1Y_A = 27
LPDDR4X_AULA_4GB_MICRON_1Y_A = 27
};
void sdram_init();

View file

@ -97,7 +97,7 @@ static const sdram_params_t210_t _dram_cfg_0_samsung_4gb = {
* DRAM size information
* Specifies the value for EMC_ADR_CFG
*/
.emc_adr_cfg = 0x00000001, // 2 populated DRAM Devices.
.emc_adr_cfg = 0x00000001, // 2 Ranks.
/*
* Specifies the time to wait after asserting pin
@ -243,7 +243,7 @@ static const sdram_params_t210_t _dram_cfg_0_samsung_4gb = {
.emc_cfg_dig_dll = 0x002C00A0,
.emc_cfg_dig_dll_1 = 0x00003701,
.emc_cfg_dig_dll_period = 0x00008000,
.emc_dev_select = 0x00000000, // Both devices.
.emc_dev_select = 0x00000000, // Both Ranks.
.emc_sel_dpd_ctrl = 0x00040008,
/* Pads trimmer delays */
@ -406,7 +406,7 @@ static const sdram_params_t210_t _dram_cfg_0_samsung_4gb = {
.pmc_ddr_ctrl = 0x0007FF8B,
.emc_acpd_control = 0x00000000,
.emc_swizzle_rank0_byte0 = 0x76543201,
.emc_swizzle_rank0_byte0 = 0x76543201, // Overridden to 0x76543201 by spare6/7.
.emc_swizzle_rank0_byte1 = 0x65324710,
.emc_swizzle_rank0_byte2 = 0x25763410,
.emc_swizzle_rank0_byte3 = 0x25673401,
@ -454,7 +454,7 @@ static const sdram_params_t210_t _dram_cfg_0_samsung_4gb = {
.emc_pmacro_data_rx_term_mode = 0x00000010,
.emc_pmacro_cmd_rx_term_mode = 0x00003000,
.emc_pmacro_data_pad_tx_ctrl = 0x02000111,
.emc_pmacro_common_pad_tx_ctrl = 0x00000008,
.emc_pmacro_common_pad_tx_ctrl = 0x00000008, // Overridden to 0x0000000A by spare4/5.
.emc_pmacro_cmd_pad_tx_ctrl = 0x0A000000,
.emc_cfg3 = 0x00000040,
@ -490,9 +490,9 @@ static const sdram_params_t210_t _dram_cfg_0_samsung_4gb = {
.emc_pmacro_cmd_ctrl2 = 0x0A0A0A0A,
/* DRAM size information */
.mc_emem_adr_cfg = 0x00000001, // 2 populated DRAM Devices.
.mc_emem_adr_cfg_dev0 = 0x00070302, // Density 512MB.
.mc_emem_adr_cfg_dev1 = 0x00070302, // Density 512MB.
.mc_emem_adr_cfg = 0x00000001, // 2 Ranks.
.mc_emem_adr_cfg_dev0 = 0x00070302, // Rank 0 Density 512MB.
.mc_emem_adr_cfg_dev1 = 0x00070302, // Rank 1 Density 512MB.
.mc_emem_adr_cfg_channel_mask = 0xFFFF2400,
.mc_emem_adr_cfg_bank_mask0 = 0x6E574400,
.mc_emem_adr_cfg_bank_mask1 = 0x39722800,
@ -653,8 +653,8 @@ static const sdram_vendor_patch_t sdram_cfg_vendor_patches_t210[] = {
{ 0x00000005, 368, DRAM_ID(1) | DRAM_ID(5) }, // mc_emem_arb_timing_r2w.
// Samsung 6GB density config.
{ 0x000C0302, 347, DRAM_ID(4) }, // mc_emem_adr_cfg_dev0. 768MB sub-partition density.
{ 0x000C0302, 348, DRAM_ID(4) }, // mc_emem_adr_cfg_dev1. 768MB sub-partition density.
{ 0x000C0302, 347, DRAM_ID(4) }, // mc_emem_adr_cfg_dev0. 768MB Rank 0 density.
{ 0x000C0302, 348, DRAM_ID(4) }, // mc_emem_adr_cfg_dev1. 768MB Rank 1 density.
{ 0x00001800, 353, DRAM_ID(4) }, // mc_emem_cfg. 6GB total density.
#ifdef CONFIG_SDRAM_COPPER_SUPPORT

View file

@ -122,7 +122,7 @@ static const sdram_params_t210b01_t _dram_cfg_08_10_12_14_samsung_hynix_4gb = {
* DRAM size information
* Specifies the value for EMC_ADR_CFG
*/
.emc_adr_cfg = 0x00000000, // 1 populated DRAM Device.
.emc_adr_cfg = 0x00000000, // 1 Rank.
/*
* Specifies the time to wait after asserting pin
@ -273,7 +273,7 @@ static const sdram_params_t210b01_t _dram_cfg_08_10_12_14_samsung_hynix_4gb = {
.emc_cfg_dig_dll = 0x002C00A0,
.emc_cfg_dig_dll_1 = 0x000F3701,
.emc_cfg_dig_dll_period = 0x00008000,
.emc_dev_select = 0x00000002, // Dev0 only.
.emc_dev_select = 0x00000002, // Rank 0 only.
.emc_sel_dpd_ctrl = 0x0004000C,
/* Pads trimmer delays */
@ -543,9 +543,9 @@ static const sdram_params_t210b01_t _dram_cfg_08_10_12_14_samsung_hynix_4gb = {
.emc_pmacro_cmd_ctrl2 = 0x00000000,
/* DRAM size information */
.mc_emem_adr_cfg = 0x00000000, // 1 populated DRAM Device.
.mc_emem_adr_cfg_dev0 = 0x00080302, // Density 1024MB.
.mc_emem_adr_cfg_dev1 = 0x00080302, // Density 1024MB.
.mc_emem_adr_cfg = 0x00000000, // 1 Rank.
.mc_emem_adr_cfg_dev0 = 0x00080302, // Rank 0 Density 1024MB.
.mc_emem_adr_cfg_dev1 = 0x00080302, // Rank 1 Density 1024MB.
.mc_emem_adr_cfg_channel_mask = 0xFFFF2400,
.mc_emem_adr_cfg_bank_mask0 = 0x6E574400,
.mc_emem_adr_cfg_bank_mask1 = 0x39722800,
@ -733,7 +733,7 @@ static const sdram_vendor_patch_t sdram_cfg_vendor_patches_t210b01[] = {
// Samsung LPDDR4X 8GB K4UBE3D4AM-MGCJ for SDEV Iowa and Hoag.
{ 0x05500000, 0x0D4 / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // emc_auto_cal_config2.
{ 0xC9AFBCBC, 0x0F4 / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // emc_auto_cal_vref_sel0.
{ 0x00000001, 0x134 / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // emc_adr_cfg. 2 populated DRAM Devices.
{ 0x00000001, 0x134 / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // emc_adr_cfg. 2 Ranks.
{ 0x00000006, 0x1CC / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // emc_quse.
{ 0x00000005, 0x1D0 / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // emc_quse_width.
{ 0x00000003, 0x1DC / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // emc_einput.
@ -764,7 +764,7 @@ static const sdram_vendor_patch_t sdram_cfg_vendor_patches_t210b01[] = {
{ 0x40000001, 0x45C / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // emc_zcal_init_dev1.
{ 0x00000000, 0x594 / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // emc_pmacro_tx_pwrd4.
{ 0x00001000, 0x598 / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // emc_pmacro_tx_pwrd5.
{ 0x00000001, 0x630 / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // mc_emem_adr_cfg. 2 populated DRAM Devices.
{ 0x00000001, 0x630 / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // mc_emem_adr_cfg. 2 Ranks.
{ 0x00002000, 0x64C / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // mc_emem_cfg. 8GB total density.
{ 0x00000002, 0x680 / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // mc_emem_arb_timing_r2r.
{ 0x02020001, 0x694 / 4, DRAM_ID2(9) | DRAM_ID2(13) }, // mc_emem_arb_da_turns.
@ -810,7 +810,7 @@ static const sdram_vendor_patch_t sdram_cfg_vendor_patches_t210b01[] = {
{ 0x2A800000, 0x6DC / 4, DRAM_ID2(16) }, // mc_video_protect_gpu_override0.
{ 0x00000002, 0x6E0 / 4, DRAM_ID2(16) }, // mc_video_protect_gpu_override1.
// Samsung LPDDR4X 4GB 10nm-class (1y) Die-X for Iowa, Hoag and SDS.
// Samsung LPDDR4X 4GB 10nm-class (1y) Die-X for Iowa, Hoag and Aula.
{ 0x05500000, 0x0D4 / 4, DRAM_ID2(17) | DRAM_ID2(19) | DRAM_ID2(24) }, // emc_auto_cal_config2.
{ 0xC9AFBCBC, 0x0F4 / 4, DRAM_ID2(17) | DRAM_ID2(19) | DRAM_ID2(24) }, // emc_auto_cal_vref_sel0.
{ 0x00000006, 0x1CC / 4, DRAM_ID2(17) | DRAM_ID2(19) | DRAM_ID2(24) }, // emc_quse.
@ -822,10 +822,10 @@ static const sdram_vendor_patch_t sdram_cfg_vendor_patches_t210b01[] = {
{ 0x2A800000, 0x6DC / 4, DRAM_ID2(17) | DRAM_ID2(19) | DRAM_ID2(24) }, // mc_video_protect_gpu_override0.
{ 0x00000002, 0x6E0 / 4, DRAM_ID2(17) | DRAM_ID2(19) | DRAM_ID2(24) }, // mc_video_protect_gpu_override1.
// Samsung LPDDR4X 8GB 10nm-class (1y) Die-X for SDEV Iowa and SDS.
// Samsung LPDDR4X 8GB 10nm-class (1y) Die-X for SDEV Iowa and Aula.
{ 0x05500000, 0x0D4 / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // emc_auto_cal_config2.
{ 0xC9AFBCBC, 0x0F4 / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // emc_auto_cal_vref_sel0.
{ 0x00000001, 0x134 / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // emc_adr_cfg. 2 populated DRAM Devices.
{ 0x00000001, 0x134 / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // emc_adr_cfg. 2 Ranks.
{ 0x00000006, 0x1CC / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // emc_quse.
{ 0x00000005, 0x1D0 / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // emc_quse_width.
{ 0x00000003, 0x1DC / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // emc_einput.
@ -847,7 +847,7 @@ static const sdram_vendor_patch_t sdram_cfg_vendor_patches_t210b01[] = {
{ 0x40000001, 0x45C / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // emc_zcal_init_dev1.
{ 0x00000000, 0x594 / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // emc_pmacro_tx_pwrd4.
{ 0x00001000, 0x598 / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // emc_pmacro_tx_pwrd5.
{ 0x00000001, 0x630 / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // mc_emem_adr_cfg. 2 populated DRAM Devices.
{ 0x00000001, 0x630 / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // mc_emem_adr_cfg. 2 Ranks.
{ 0x00002000, 0x64C / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // mc_emem_cfg. 8GB total density.
{ 0x00000001, 0x670 / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // mc_emem_arb_timing_faw.
{ 0x00000002, 0x680 / 4, DRAM_ID2(18) | DRAM_ID2(23) }, // mc_emem_arb_timing_r2r.
@ -881,7 +881,7 @@ static const sdram_vendor_patch_t sdram_cfg_vendor_patches_t210b01[] = {
// Samsung LPDDR4X 8GB 10nm-class (1y) Die-Y for SDEV Iowa.
{ 0x05500000, 0x0D4 / 4, DRAM_ID2(21) }, // emc_auto_cal_config2.
{ 0xC9AFBCBC, 0x0F4 / 4, DRAM_ID2(21) }, // emc_auto_cal_vref_sel0.
{ 0x00000001, 0x134 / 4, DRAM_ID2(21) }, // emc_adr_cfg. 2 populated DRAM Devices.
{ 0x00000001, 0x134 / 4, DRAM_ID2(21) }, // emc_adr_cfg. 2 Ranks.
{ 0x00000008, 0x24C / 4, DRAM_ID2(21) }, // emc_tfaw.
{ 0x08010004, 0x2B8 / 4, DRAM_ID2(21) }, // emc_mrw1.
{ 0x08020000, 0x2BC / 4, DRAM_ID2(21) }, // emc_mrw2.
@ -914,7 +914,7 @@ static const sdram_vendor_patch_t sdram_cfg_vendor_patches_t210b01[] = {
{ 0x40000001, 0x45C / 4, DRAM_ID2(21) }, // emc_zcal_init_dev1.
{ 0x00000000, 0x594 / 4, DRAM_ID2(21) }, // emc_pmacro_tx_pwrd4.
{ 0x00001000, 0x598 / 4, DRAM_ID2(21) }, // emc_pmacro_tx_pwrd5.
{ 0x00000001, 0x630 / 4, DRAM_ID2(21) }, // mc_emem_adr_cfg. 2 populated DRAM Devices.
{ 0x00000001, 0x630 / 4, DRAM_ID2(21) }, // mc_emem_adr_cfg. 2 Ranks.
{ 0x00002000, 0x64C / 4, DRAM_ID2(21) }, // mc_emem_cfg. 8GB total density.
{ 0x00000001, 0x670 / 4, DRAM_ID2(21) }, // mc_emem_arb_timing_faw.
{ 0x00000002, 0x680 / 4, DRAM_ID2(21) }, // mc_emem_arb_timing_r2r.
@ -922,7 +922,7 @@ static const sdram_vendor_patch_t sdram_cfg_vendor_patches_t210b01[] = {
{ 0x2A800000, 0x6DC / 4, DRAM_ID2(21) }, // mc_video_protect_gpu_override0.
{ 0x00000002, 0x6E0 / 4, DRAM_ID2(21) }, // mc_video_protect_gpu_override1.
// Samsung LPDDR4X 4GB 10nm-class (1y) Die-A for Unknown SDS.
// Samsung LPDDR4X 4GB 10nm-class (1y) Die-A for Unknown Aula.
{ 0x05500000, 0x0D4 / 4, DRAM_ID2(22) }, // emc_auto_cal_config2.
{ 0xC9AFBCBC, 0x0F4 / 4, DRAM_ID2(22) }, // emc_auto_cal_vref_sel0.
{ 0x00000008, 0x24C / 4, DRAM_ID2(22) }, // emc_tfaw.
@ -986,7 +986,7 @@ static const sdram_vendor_patch_t sdram_cfg_vendor_patches_t210b01[] = {
{ 0x00000002, 0x6E0 / 4, DRAM_ID2(22) }, // mc_video_protect_gpu_override1.
{ 0x0000009C, 0x814 / 4, DRAM_ID2(22) }, // swizzle_rank_byte_encode.
// Micron LPDDR4X 4GB 10nm-class (1y) Die-A for Unknown Iowa/Hoag/SDS.
// Micron LPDDR4X 4GB 10nm-class (1y) Die-A for Unknown Iowa/Hoag/Aula.
{ 0x05500000, 0x0D4 / 4, DRAM_ID2(25) | DRAM_ID2(26) | DRAM_ID2(27) }, // emc_auto_cal_config2.
{ 0xC9AFBCBC, 0x0F4 / 4, DRAM_ID2(25) | DRAM_ID2(26) | DRAM_ID2(27) }, // emc_auto_cal_vref_sel0.
{ 0x00000006, 0x1CC / 4, DRAM_ID2(25) | DRAM_ID2(26) | DRAM_ID2(27) }, // emc_quse.

View file

@ -1,8 +1,7 @@
/*
* Defining registers address and its bit definitions of MAX77620 and MAX20024
*
* Copyright (c) 2016 NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2019 CTCaer
* Copyright (c) 2019-2020 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
@ -30,24 +29,33 @@
#define MAX77620_CNFGGLBL1_LBHYST_200 (1 << 4)
#define MAX77620_CNFGGLBL1_LBHYST_300 (2 << 4)
#define MAX77620_CNFGGLBL1_LBHYST_400 (3 << 4)
#define MAX77620_CNFGGLBL1_LBHYST (BIT(5) | BIT(4))
#define MAX77620_CNFGGLBL1_MPPLD BIT(6)
#define MAX77620_CNFGGLBL1_LBDAC_EN BIT(7)
#define MAX77620_REG_CNFGGLBL2 0x01
#define MAX77620_REG_CNFGGLBL3 0x02
#define MAX77620_WDTC_MASK 0x3
#define MAX77620_WDTEN BIT(2)
#define MAX77620_WDTSLPC BIT(3)
#define MAX77620_WDTOFFC BIT(4)
#define MAX77620_TWD_MASK 0x3
#define MAX77620_TWD_2s 0x0
#define MAX77620_TWD_16s 0x1
#define MAX77620_TWD_64s 0x2
#define MAX77620_TWD_128s 0x3
#define MAX77620_WDTEN BIT(2)
#define MAX77620_WDTSLPC BIT(3)
#define MAX77620_WDTOFFC BIT(4)
#define MAX77620_GLBL_LPM BIT(5)
#define MAX77620_I2CTWD_MASK 0xC0
#define MAX77620_I2CTWD_DISABLED 0x00
#define MAX77620_I2CTWD_1_33ms 0x40
#define MAX77620_I2CTWD_35_7ms 0x80
#define MAX77620_I2CTWD_41_7ms 0xC0
#define MAX77620_REG_CNFGGLBL3 0x02
#define MAX77620_WDTC_MASK 0x3
#define MAX77620_REG_CNFG1_32K 0x03
#define MAX77620_CNFG1_PWR_MD_32K_MASK 0x3
#define MAX77620_CNFG1_32K_OUT0_EN BIT(2)
#define MAX77620_CNFG1_32KLOAD_MASK 0x30
#define MAX77620_CNFG1_32K_OK BIT(7)
#define MAX77620_REG_CNFGBBC 0x04
#define MAX77620_CNFGBBC_ENABLE BIT(0)
@ -64,6 +72,7 @@
#define MAX77620_CNFGBBC_RESISTOR_6K (3 << MAX77620_CNFGBBC_RESISTOR_SHIFT)
#define MAX77620_REG_IRQTOP 0x05
#define MAX77620_REG_IRQTOPM 0x0D
#define MAX77620_IRQ_TOP_ONOFF_MASK BIT(1)
#define MAX77620_IRQ_TOP_32K_MASK BIT(2)
#define MAX77620_IRQ_TOP_RTC_MASK BIT(3)
@ -73,28 +82,53 @@
#define MAX77620_IRQ_TOP_GLBL_MASK BIT(7)
#define MAX77620_REG_INTLBT 0x06
#define MAX77620_REG_IRQTOPM 0x0D
#define MAX77620_REG_INTENLBT 0x0E
#define MAX77620_IRQ_GLBLM_MASK BIT(0)
#define MAX77620_IRQ_TJALRM2_MASK BIT(1)
#define MAX77620_IRQ_TJALRM1_MASK BIT(2)
#define MAX77620_IRQ_LBM_MASK BIT(3)
#define MAX77620_REG_IRQSD 0x07
#define MAX77620_REG_IRQ_LVL2_L0_7 0x08
#define MAX77620_REG_IRQ_LVL2_L8 0x09
#define MAX77620_REG_IRQ_LVL2_GPIO 0x0A
#define MAX77620_REG_ONOFFIRQ 0x0B
#define MAX77620_REG_NVERC 0x0C
#define MAX77620_REG_INTENLBT 0x0E
#define MAX77620_GLBLM_MASK BIT(0)
#define MAX77620_REG_IRQMASKSD 0x0F
#define MAX77620_IRQSD_PFI_SD3 BIT(4)
#define MAX77620_IRQSD_PFI_SD2 BIT(5)
#define MAX77620_IRQSD_PFI_SD1 BIT(6)
#define MAX77620_IRQSD_PFI_SD0 BIT(7)
#define MAX77620_REG_IRQ_LVL2_L0_7 0x08 // LDO number that irq occured.
#define MAX77620_REG_IRQ_MSK_L0_7 0x10
#define MAX77620_REG_IRQ_LVL2_L8 0x09 // LDO number that irq occured. Only bit0: LDO8 is valid.
#define MAX77620_REG_IRQ_MSK_L8 0x11
#define MAX77620_REG_IRQ_LVL2_GPIO 0x0A // Edge detection interrupt.
#define MAX77620_REG_ONOFFIRQ 0x0B
#define MAX77620_REG_ONOFFIRQM 0x12
#define MAX77620_ONOFFIRQ_MRWRN BIT(0)
#define MAX77620_ONOFFIRQ_EN0_1SEC BIT(1)
#define MAX77620_ONOFFIRQ_EN0_F BIT(2)
#define MAX77620_ONOFFIRQ_EN0_R BIT(3)
#define MAX77620_ONOFFIRQ_LID_F BIT(4)
#define MAX77620_ONOFFIRQ_LID_R BIT(5)
#define MAX77620_ONOFFIRQ_ACOK_F BIT(6)
#define MAX77620_ONOFFIRQ_ACOK_R BIT(7)
#define MAX77620_REG_NVERC 0x0C // Shutdown reason (non-volatile).
#define MAX77620_NVERC_SHDN BIT(0)
#define MAX77620_NVERC_WTCHDG BIT(1)
#define MAX77620_NVERC_HDRST BIT(2)
#define MAX77620_NVERC_TOVLD BIT(3)
#define MAX77620_NVERC_MBLSD BIT(4)
#define MAX77620_NVERC_MBO BIT(5)
#define MAX77620_NVERC_MBU BIT(6)
#define MAX77620_NVERC_RSTIN BIT(7)
#define MAX77620_REG_STATLBT 0x13
#define MAX77620_REG_STATSD 0x14
#define MAX77620_REG_ONOFFSTAT 0x15
#define MAX77620_ONOFFSTAT_LID BIT(0)
#define MAX77620_ONOFFSTAT_ACOK BIT(1)
#define MAX77620_ONOFFSTAT_EN0 BIT(2)
/* SD and LDO Registers */
#define MAX77620_REG_SD0 0x16
@ -102,18 +136,42 @@
#define MAX77620_REG_SD2 0x18
#define MAX77620_REG_SD3 0x19
#define MAX77620_REG_SD4 0x1A
#define MAX77620_REG_DVSSD0 0x1B
#define MAX77620_REG_DVSSD1 0x1C
#define MAX77620_SDX_VOLT_MASK 0xFF
#define MAX77620_SD0_VOLT_MASK 0x3F
#define MAX77620_SD1_VOLT_MASK 0x7F
#define MAX77620_LDO_VOLT_MASK 0x3F
#define MAX77620_REG_DVSSD0 0x1B
#define MAX77620_REG_DVSSD1 0x1C
#define MAX77620_REG_SD0_CFG 0x1D // SD CNFG1.
#define MAX77620_REG_SD1_CFG 0x1E // SD CNFG1.
#define MAX77620_REG_SD2_CFG 0x1F // SD CNFG1.
#define MAX77620_REG_SD3_CFG 0x20 // SD CNFG1.
#define MAX77620_REG_SD4_CFG 0x21 // SD CNFG1.
#define MAX77620_REG_SD0_CFG 0x1D
#define MAX77620_REG_SD1_CFG 0x1E
#define MAX77620_REG_SD2_CFG 0x1F
#define MAX77620_REG_SD3_CFG 0x20
#define MAX77620_REG_SD4_CFG 0x21
#define MAX77620_SD_SR_MASK 0xC0
#define MAX77620_SD_SR_SHIFT 6
#define MAX77620_SD_POWER_MODE_MASK 0x30
#define MAX77620_SD_POWER_MODE_SHIFT 4
#define MAX77620_SD_CFG1_ADE_MASK BIT(3)
#define MAX77620_SD_CFG1_ADE_DISABLE 0
#define MAX77620_SD_CFG1_ADE_ENABLE BIT(3)
#define MAX77620_SD_FPWM_MASK 0x04
#define MAX77620_SD_FPWM_SHIFT 2
#define MAX77620_SD_FSRADE_MASK 0x01
#define MAX77620_SD_FSRADE_SHIFT 0
#define MAX77620_SD_CFG1_FPWM_SD_MASK BIT(2)
#define MAX77620_SD_CFG1_FPWM_SD_SKIP 0
#define MAX77620_SD_CFG1_FPWM_SD_FPWM BIT(2)
#define MAX77620_SD_CFG1_MPOK_MASK BIT(1)
#define MAX77620_SD_CFG1_FSRADE_SD_MASK BIT(0)
#define MAX77620_SD_CFG1_FSRADE_SD_DISABLE 0
#define MAX77620_SD_CFG1_FSRADE_SD_ENABLE BIT(0)
#define MAX77620_REG_SD_CFG2 0x22
#define MAX77620_SD_CNF2_RSVD BIT(0)
#define MAX77620_SD_CNF2_ROVS_EN_SD1 BIT(1)
#define MAX77620_SD_CNF2_ROVS_EN_SD0 BIT(2)
#define MAX77620_REG_LDO0_CFG 0x23
#define MAX77620_REG_LDO0_CFG2 0x24
#define MAX77620_REG_LDO1_CFG 0x25
@ -132,26 +190,36 @@
#define MAX77620_REG_LDO7_CFG2 0x32
#define MAX77620_REG_LDO8_CFG 0x33
#define MAX77620_REG_LDO8_CFG2 0x34
#define MAX77620_LDO_CFG2_SS_MASK (1 << 0)
#define MAX77620_LDO_CFG2_SS_FAST (1 << 0)
#define MAX77620_LDO_CFG2_SS_SLOW 0
#define MAX77620_LDO_CFG2_ADE_MASK (1 << 1)
#define MAX77620_LDO_CFG2_ADE_DISABLE (0 << 1)
#define MAX77620_LDO_CFG2_ADE_ENABLE (1 << 1)
#define MAX20024_LDO_CFG2_MPOK_MASK BIT(2)
#define MAX77620_LDO_POWER_MODE_MASK 0xC0
/*! LDO CFG */
#define MAX77620_LDO_POWER_MODE_SHIFT 6
#define MAX77620_LDO_POWER_MODE_MASK (3 << MAX77620_LDO_POWER_MODE_SHIFT)
#define MAX77620_POWER_MODE_NORMAL 3
#define MAX77620_POWER_MODE_LPM 2
#define MAX77620_POWER_MODE_GLPM 1
#define MAX77620_POWER_MODE_DISABLE 0
/*! LDO CFG2 */
#define MAX77620_LDO_CFG2_SS_MASK (1 << 0)
#define MAX77620_LDO_CFG2_SS_FAST (0 << 0)
#define MAX77620_LDO_CFG2_SS_SLOW (1 << 0)
#define MAX77620_LDO_CFG2_ADE_MASK (1 << 1)
#define MAX77620_LDO_CFG2_ADE_DISABLE (0 << 1)
#define MAX77620_LDO_CFG2_ADE_ENABLE (1 << 1)
#define MAX77620_LDO_CFG2_MPOK_MASK BIT(2)
#define MAX77620_LDO_CFG2_POK_MASK BIT(3)
#define MAX77620_LDO_CFG2_COMP_SHIFT 4
#define MAX77620_LDO_CFG2_COMP_MASK (3 << MAX77620_LDO_COMP_SHIFT)
#define MAX77620_LDO_CFG2_COMP_SLOW 3
#define MAX77620_LDO_CFG2_COMP_MID_SLOW 2
#define MAX77620_LDO_CFG2_COMP_MID_FAST 1
#define MAX77620_LDO_CFG2_COMP_FAST 0
#define MAX77620_LDO_CFG2_ALPM_EN_MASK BIT(6)
#define MAX77620_LDO_CFG2_OVCLMP_MASK BIT(7)
#define MAX77620_REG_LDO_CFG3 0x35
#define MAX77620_LDO_BIAS_EN BIT(0)
#define MAX77620_TRACK4_SHIFT 5
#define MAX77620_TRACK4_MASK (1 << MAX77620_TRACK4_SHIFT)
#define MAX77620_LDO_SLEW_RATE_MASK 0x1
#define MAX77620_REG_GPIO0 0x36
#define MAX77620_REG_GPIO1 0x37
#define MAX77620_REG_GPIO2 0x38
@ -160,9 +228,6 @@
#define MAX77620_REG_GPIO5 0x3B
#define MAX77620_REG_GPIO6 0x3C
#define MAX77620_REG_GPIO7 0x3D
#define MAX77620_REG_PUE_GPIO 0x3E
#define MAX77620_REG_PDE_GPIO 0x3F
#define MAX77620_REG_AME_GPIO 0x40
#define MAX77620_CNFG_GPIO_DRV_MASK (1 << 0)
#define MAX77620_CNFG_GPIO_DRV_PUSHPULL (1 << 0)
#define MAX77620_CNFG_GPIO_DRV_OPENDRAIN (0 << 0)
@ -181,6 +246,13 @@
#define MAX77620_CNFG_GPIO_DBNC_8ms (0x1 << 6)
#define MAX77620_CNFG_GPIO_DBNC_16ms (0x2 << 6)
#define MAX77620_CNFG_GPIO_DBNC_32ms (0x3 << 6)
#define MAX77620_GPIO_OUTPUT_DISABLE 0
#define MAX77620_GPIO_OUTPUT_ENABLE 1
#define MAX77620_REG_PUE_GPIO 0x3E // Gpio Pullup resistor enable.
#define MAX77620_REG_PDE_GPIO 0x3F // Gpio Pulldown resistor enable.
#define MAX77620_REG_AME_GPIO 0x40 // Gpio pinmuxing. Clear bits are Standard GPIO.
#define MAX77620_REG_ONOFFCNFG1 0x41
#define MAX20024_ONOFFCNFG1_CLRSE 0x18
@ -188,19 +260,30 @@
#define MAX77620_ONOFFCNFG1_SLPEN BIT(2)
#define MAX77620_ONOFFCNFG1_MRT_SHIFT 0x3
#define MAX77620_ONOFFCNFG1_MRT_MASK 0x38
#define MAX77620_ONOFFCNFG1_RSVD BIT(6)
#define MAX77620_ONOFFCNFG1_SFT_RST BIT(7)
#define MAX77620_REG_ONOFFCNFG2 0x42
#define MAX77620_ONOFFCNFG2_WK_EN0 BIT(0)
#define MAX77620_ONOFFCNFG2_WK_ALARM2 BIT(1)
#define MAX77620_ONOFFCNFG2_WK_ALARM1 BIT(2)
#define MAX77620_ONOFFCNFG2_WK_MBATT BIT(3) // MBATT event generates a wakeup signal. use it in android/l4t?
#define MAX77620_ONOFFCNFG2_WK_ACOK BIT(4)
#define MAX77620_ONOFFCNFG2_SLP_LPM_MSK BIT(5)
#define MAX77620_ONOFFCNFG2_WD_RST_WK BIT(6)
#define MAX77620_ONOFFCNFG2_SFT_RST_WK BIT(7)
/* FPS Registers */
#define MAX77620_REG_FPS_CFG0 0x43
#define MAX77620_REG_FPS_CFG1 0x44
#define MAX77620_REG_FPS_CFG2 0x45
#define MAX77620_REG_FPS_CFG0 0x43 // FPS0.
#define MAX77620_REG_FPS_CFG1 0x44 // FPS1.
#define MAX77620_REG_FPS_CFG2 0x45 // FPS2.
#define MAX77620_FPS_ENFPS_SW_MASK 0x01
#define MAX77620_FPS_ENFPS_SW 0x01
#define MAX77620_FPS_EN_SRC_SHIFT 1
#define MAX77620_FPS_EN_SRC_MASK 0x06
#define MAX77620_FPS_TIME_PERIOD_SHIFT 3
#define MAX77620_FPS_TIME_PERIOD_MASK 0x38
#define MAX77620_REG_FPS_LDO0 0x46
#define MAX77620_REG_FPS_LDO1 0x47
#define MAX77620_REG_FPS_LDO2 0x48
@ -215,77 +298,39 @@
#define MAX77620_REG_FPS_SD2 0x51
#define MAX77620_REG_FPS_SD3 0x52
#define MAX77620_REG_FPS_SD4 0x53
#define MAX77620_REG_FPS_NONE 0
#define MAX77620_FPS_SRC_MASK 0xC0
#define MAX77620_FPS_SRC_SHIFT 6
#define MAX77620_FPS_PU_PERIOD_MASK 0x38
#define MAX77620_FPS_PU_PERIOD_SHIFT 3
#define MAX77620_FPS_PD_PERIOD_MASK 0x07
#define MAX77620_FPS_PD_PERIOD_SHIFT 0
/* Minimum and maximum FPS period time (in microseconds) are
* different for MAX77620 and Max20024.
*/
#define MAX77620_FPS_COUNT 3
#define MAX77620_FPS_PERIOD_MIN_US 40
#define MAX20024_FPS_PERIOD_MIN_US 20
#define MAX77620_FPS_PERIOD_MAX_US 2560
#define MAX20024_FPS_PERIOD_MAX_US 5120
#define MAX77620_REG_FPS_GPIO1 0x54
#define MAX77620_REG_FPS_GPIO2 0x55
#define MAX77620_REG_FPS_GPIO3 0x56
#define MAX77620_FPS_TIME_PERIOD_MASK 0x38
#define MAX77620_FPS_TIME_PERIOD_SHIFT 3
#define MAX77620_FPS_EN_SRC_MASK 0x06
#define MAX77620_FPS_EN_SRC_SHIFT 1
#define MAX77620_FPS_ENFPS_SW_MASK 0x01
#define MAX77620_FPS_ENFPS_SW 0x01
#define MAX77620_REG_FPS_RSO 0x57
#define MAX77620_FPS_PD_PERIOD_SHIFT 0
#define MAX77620_FPS_PD_PERIOD_MASK 0x07
#define MAX77620_FPS_PU_PERIOD_SHIFT 3
#define MAX77620_FPS_PU_PERIOD_MASK 0x38
#define MAX77620_FPS_SRC_SHIFT 6
#define MAX77620_FPS_SRC_MASK 0xC0
#define MAX77620_FPS_COUNT 3
#define MAX77620_FPS_PERIOD_MIN_US 40
#define MAX77620_FPS_PERIOD_MAX_US 2560
#define MAX77620_REG_CID0 0x58
#define MAX77620_REG_CID1 0x59
#define MAX77620_REG_CID2 0x5A
#define MAX77620_REG_CID3 0x5B
#define MAX77620_REG_CID4 0x5C
#define MAX77620_REG_CID4 0x5C // OTP version.
#define MAX77620_REG_CID5 0x5D
#define MAX77620_REG_DVSSD4 0x5E
#define MAX20024_REG_MAX_ADD 0x70
#define MAX77620_CID_DIDM_MASK 0xF0
#define MAX77620_CID_DIDM_SHIFT 4
/* CNCG2SD */
#define MAX77620_SD_CNF2_ROVS_EN_SD1 BIT(1)
#define MAX77620_SD_CNF2_ROVS_EN_SD0 BIT(2)
#define MAX77620_CID_DIDO_MASK 0xF
#define MAX77620_CID_DIDO_SHIFT 0
#define MAX77620_CID_DIDM_MASK 0xF0
#define MAX77620_CID_DIDM_SHIFT 4
/* Device Identification Metal */
#define MAX77620_CID5_DIDM(n) (((n) >> 4) & 0xF)
/* Device Indentification OTP */
#define MAX77620_CID5_DIDO(n) ((n) & 0xF)
/* SD CNFG1 */
#define MAX77620_SD_SR_MASK 0xC0
#define MAX77620_SD_SR_SHIFT 6
#define MAX77620_SD_POWER_MODE_MASK 0x30
#define MAX77620_SD_POWER_MODE_SHIFT 4
#define MAX77620_SD_CFG1_ADE_MASK BIT(3)
#define MAX77620_SD_CFG1_ADE_DISABLE 0
#define MAX77620_SD_CFG1_ADE_ENABLE BIT(3)
#define MAX77620_SD_FPWM_MASK 0x04
#define MAX77620_SD_FPWM_SHIFT 2
#define MAX77620_SD_FSRADE_MASK 0x01
#define MAX77620_SD_FSRADE_SHIFT 0
#define MAX77620_SD_CFG1_FPWM_SD_MASK BIT(2)
#define MAX77620_SD_CFG1_FPWM_SD_SKIP 0
#define MAX77620_SD_CFG1_FPWM_SD_FPWM BIT(2)
#define MAX20024_SD_CFG1_MPOK_MASK BIT(1)
#define MAX77620_SD_CFG1_FSRADE_SD_MASK BIT(0)
#define MAX77620_SD_CFG1_FSRADE_SD_DISABLE 0
#define MAX77620_SD_CFG1_FSRADE_SD_ENABLE BIT(0)
#define MAX77620_REG_DVSSD4 0x5E
#define MAX20024_REG_MAX_ADD 0x70
#define MAX77620_IRQ_LVL2_GPIO_EDGE0 BIT(0)
#define MAX77620_IRQ_LVL2_GPIO_EDGE1 BIT(1)
@ -332,9 +377,4 @@ enum max77620_fps_src {
MAX77620_FPS_SRC_DEF,
};
enum max77620_chip_id {
MAX77620,
MAX20024,
};
#endif /* _MFD_MAX77620_H_ */

View file

@ -1,6 +1,6 @@
/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2019 CTCaer
* Copyright (c) 2019-2020 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
@ -17,163 +17,322 @@
#include <power/max7762x.h>
#include <power/max77620.h>
#include <power/max77812.h>
#include <soc/fuse.h>
#include <soc/i2c.h>
#include <soc/t210.h>
#include <utils/util.h>
#define REGULATOR_SD 0
#define REGULATOR_SD 0
#define REGULATOR_LDO 1
#define REGULATOR_BC0 2
#define REGULATOR_BC1 3
typedef struct _max77620_regulator_t
typedef struct _max77620_fps_t
{
u8 type;
const char *name;
u8 reg_sd;
u32 mv_step;
u32 mv_min;
u32 mv_default;
u32 mv_max;
u8 volt_addr;
u8 cfg_addr;
u8 volt_mask;
u8 enable_mask;
u8 enable_shift;
u8 status_mask;
u8 fps_addr;
u8 fps_src;
u8 pd_period;
u8 pu_period;
} max77620_fps_t;
typedef struct _max77621_ctrl_t
{
u8 ctrl1_por;
u8 ctrl1_hos;
u8 ctrl2_por;
u8 ctrl2_hos;
} max77621_ctrl_t;
typedef struct _max77812_ctrl_t
{
u8 mask;
u8 shift;
u8 rsvd0;
u8 rsvd1;
} max77812_en_t;
typedef struct _max77620_regulator_t
{
const char *name;
u32 uv_step;
u32 uv_min;
u32 uv_default;
u32 uv_max;
u8 type;
u8 volt_addr;
u8 cfg_addr;
u8 volt_mask;
union {
max77620_fps_t fps;
max77621_ctrl_t ctrl;
max77812_en_t enable;
};
} max77620_regulator_t;
static const max77620_regulator_t _pmic_regulators[] = {
{ REGULATOR_SD, "sd0", 0x16, 12500, 600000, 625000, 1400000, MAX77620_REG_SD0, MAX77620_REG_SD0_CFG, MAX77620_SD0_VOLT_MASK, MAX77620_SD_POWER_MODE_MASK, MAX77620_SD_POWER_MODE_SHIFT, 0x80, MAX77620_REG_FPS_SD0, 1, 7, 1 },
{ REGULATOR_SD, "sd1", 0x17, 12500, 600000, 1125000, 1125000, MAX77620_REG_SD1, MAX77620_REG_SD1_CFG, MAX77620_SD1_VOLT_MASK, MAX77620_SD_POWER_MODE_MASK, MAX77620_SD_POWER_MODE_SHIFT, 0x40, MAX77620_REG_FPS_SD1, 0, 1, 5 },
{ REGULATOR_SD, "sd2", 0x18, 12500, 600000, 1325000, 1350000, MAX77620_REG_SD2, MAX77620_REG_SD2_CFG, MAX77620_SDX_VOLT_MASK, MAX77620_SD_POWER_MODE_MASK, MAX77620_SD_POWER_MODE_SHIFT, 0x20, MAX77620_REG_FPS_SD2, 1, 5, 2 },
{ REGULATOR_SD, "sd3", 0x19, 12500, 600000, 1800000, 1800000, MAX77620_REG_SD3, MAX77620_REG_SD3_CFG, MAX77620_SDX_VOLT_MASK, MAX77620_SD_POWER_MODE_MASK, MAX77620_SD_POWER_MODE_SHIFT, 0x10, MAX77620_REG_FPS_SD3, 0, 3, 3 },
{ REGULATOR_LDO, "ldo0", 0x00, 25000, 800000, 1200000, 1200000, MAX77620_REG_LDO0_CFG, MAX77620_REG_LDO0_CFG2, MAX77620_LDO_VOLT_MASK, MAX77620_LDO_POWER_MODE_MASK, MAX77620_LDO_POWER_MODE_SHIFT, 0x00, MAX77620_REG_FPS_LDO0, 3, 7, 0 },
{ REGULATOR_LDO, "ldo1", 0x00, 25000, 800000, 1050000, 1050000, MAX77620_REG_LDO1_CFG, MAX77620_REG_LDO1_CFG2, MAX77620_LDO_VOLT_MASK, MAX77620_LDO_POWER_MODE_MASK, MAX77620_LDO_POWER_MODE_SHIFT, 0x00, MAX77620_REG_FPS_LDO1, 3, 7, 0 },
{ REGULATOR_LDO, "ldo2", 0x00, 50000, 800000, 1800000, 3300000, MAX77620_REG_LDO2_CFG, MAX77620_REG_LDO2_CFG2, MAX77620_LDO_VOLT_MASK, MAX77620_LDO_POWER_MODE_MASK, MAX77620_LDO_POWER_MODE_SHIFT, 0x00, MAX77620_REG_FPS_LDO2, 3, 7, 0 },
{ REGULATOR_LDO, "ldo3", 0x00, 50000, 800000, 3100000, 3100000, MAX77620_REG_LDO3_CFG, MAX77620_REG_LDO3_CFG2, MAX77620_LDO_VOLT_MASK, MAX77620_LDO_POWER_MODE_MASK, MAX77620_LDO_POWER_MODE_SHIFT, 0x00, MAX77620_REG_FPS_LDO3, 3, 7, 0 },
{ REGULATOR_LDO, "ldo4", 0x00, 12500, 800000, 850000, 850000, MAX77620_REG_LDO4_CFG, MAX77620_REG_LDO4_CFG2, MAX77620_LDO_VOLT_MASK, MAX77620_LDO_POWER_MODE_MASK, MAX77620_LDO_POWER_MODE_SHIFT, 0x00, MAX77620_REG_FPS_LDO4, 0, 7, 1 },
{ REGULATOR_LDO, "ldo5", 0x00, 50000, 800000, 1800000, 1800000, MAX77620_REG_LDO5_CFG, MAX77620_REG_LDO5_CFG2, MAX77620_LDO_VOLT_MASK, MAX77620_LDO_POWER_MODE_MASK, MAX77620_LDO_POWER_MODE_SHIFT, 0x00, MAX77620_REG_FPS_LDO5, 3, 7, 0 },
{ REGULATOR_LDO, "ldo6", 0x00, 50000, 800000, 2900000, 2900000, MAX77620_REG_LDO6_CFG, MAX77620_REG_LDO6_CFG2, MAX77620_LDO_VOLT_MASK, MAX77620_LDO_POWER_MODE_MASK, MAX77620_LDO_POWER_MODE_SHIFT, 0x00, MAX77620_REG_FPS_LDO6, 3, 7, 0 },
{ REGULATOR_LDO, "ldo7", 0x00, 50000, 800000, 1050000, 1050000, MAX77620_REG_LDO7_CFG, MAX77620_REG_LDO7_CFG2, MAX77620_LDO_VOLT_MASK, MAX77620_LDO_POWER_MODE_MASK, MAX77620_LDO_POWER_MODE_SHIFT, 0x00, MAX77620_REG_FPS_LDO7, 1, 4, 3 },
{ REGULATOR_LDO, "ldo8", 0x00, 50000, 800000, 1050000, 2800000, MAX77620_REG_LDO8_CFG, MAX77620_REG_LDO8_CFG2, MAX77620_LDO_VOLT_MASK, MAX77620_LDO_POWER_MODE_MASK, MAX77620_LDO_POWER_MODE_SHIFT, 0x00, MAX77620_REG_FPS_LDO8, 3, 7, 0 }
{ "sd0", 12500, 600000, 625000, 1400000, REGULATOR_SD, MAX77620_REG_SD0, MAX77620_REG_SD0_CFG, MAX77620_SD0_VOLT_MASK, {{ MAX77620_REG_FPS_SD0, 1, 7, 1 }} },
{ "sd1", 12500, 600000, 1125000, 1125000, REGULATOR_SD, MAX77620_REG_SD1, MAX77620_REG_SD1_CFG, MAX77620_SD1_VOLT_MASK, {{ MAX77620_REG_FPS_SD1, 0, 1, 5 }} },
{ "sd2", 12500, 600000, 1325000, 1350000, REGULATOR_SD, MAX77620_REG_SD2, MAX77620_REG_SD2_CFG, MAX77620_SDX_VOLT_MASK, {{ MAX77620_REG_FPS_SD2, 1, 5, 2 }} },
{ "sd3", 12500, 600000, 1800000, 1800000, REGULATOR_SD, MAX77620_REG_SD3, MAX77620_REG_SD3_CFG, MAX77620_SDX_VOLT_MASK, {{ MAX77620_REG_FPS_SD3, 0, 3, 3 }} },
{ "ldo0", 25000, 800000, 1200000, 1200000, REGULATOR_LDO, MAX77620_REG_LDO0_CFG, MAX77620_REG_LDO0_CFG2, MAX77620_LDO_VOLT_MASK, {{ MAX77620_REG_FPS_LDO0, 3, 7, 0 }} },
{ "ldo1", 25000, 800000, 1050000, 1050000, REGULATOR_LDO, MAX77620_REG_LDO1_CFG, MAX77620_REG_LDO1_CFG2, MAX77620_LDO_VOLT_MASK, {{ MAX77620_REG_FPS_LDO1, 3, 7, 0 }} },
{ "ldo2", 50000, 800000, 1800000, 3300000, REGULATOR_LDO, MAX77620_REG_LDO2_CFG, MAX77620_REG_LDO2_CFG2, MAX77620_LDO_VOLT_MASK, {{ MAX77620_REG_FPS_LDO2, 3, 7, 0 }} },
{ "ldo3", 50000, 800000, 3100000, 3100000, REGULATOR_LDO, MAX77620_REG_LDO3_CFG, MAX77620_REG_LDO3_CFG2, MAX77620_LDO_VOLT_MASK, {{ MAX77620_REG_FPS_LDO3, 3, 7, 0 }} },
{ "ldo4", 12500, 800000, 850000, 1000000, REGULATOR_LDO, MAX77620_REG_LDO4_CFG, MAX77620_REG_LDO4_CFG2, MAX77620_LDO_VOLT_MASK, {{ MAX77620_REG_FPS_LDO4, 0, 7, 1 }} },
{ "ldo5", 50000, 800000, 1800000, 1800000, REGULATOR_LDO, MAX77620_REG_LDO5_CFG, MAX77620_REG_LDO5_CFG2, MAX77620_LDO_VOLT_MASK, {{ MAX77620_REG_FPS_LDO5, 3, 7, 0 }} },
{ "ldo6", 50000, 800000, 2900000, 2900000, REGULATOR_LDO, MAX77620_REG_LDO6_CFG, MAX77620_REG_LDO6_CFG2, MAX77620_LDO_VOLT_MASK, {{ MAX77620_REG_FPS_LDO6, 3, 7, 0 }} },
{ "ldo7", 50000, 800000, 1050000, 1050000, REGULATOR_LDO, MAX77620_REG_LDO7_CFG, MAX77620_REG_LDO7_CFG2, MAX77620_LDO_VOLT_MASK, {{ MAX77620_REG_FPS_LDO7, 1, 4, 3 }} },
{ "ldo8", 50000, 800000, 1050000, 2800000, REGULATOR_LDO, MAX77620_REG_LDO8_CFG, MAX77620_REG_LDO8_CFG2, MAX77620_LDO_VOLT_MASK, {{ MAX77620_REG_FPS_LDO8, 3, 7, 0 }} },
{ "max77621_CPU", 6250, 606250, 1000000, 1400000, REGULATOR_BC0, MAX77621_VOUT_REG, MAX77621_VOUT_DVS_REG, MAX77621_DVC_DVS_VOLT_MASK, {{ MAX77621_CPU_CTRL1_POR_DEFAULT, MAX77621_CPU_CTRL1_HOS_DEFAULT, MAX77621_CPU_CTRL2_POR_DEFAULT, MAX77621_CPU_CTRL2_HOS_DEFAULT }} },
{ "max77621_GPU", 6250, 606250, 1200000, 1400000, REGULATOR_BC0, MAX77621_VOUT_REG, MAX77621_VOUT_DVS_REG, MAX77621_DVC_DVS_VOLT_MASK, {{ MAX77621_CPU_CTRL1_POR_DEFAULT, MAX77621_CPU_CTRL1_HOS_DEFAULT, MAX77621_CPU_CTRL2_POR_DEFAULT, MAX77621_CPU_CTRL2_HOS_DEFAULT }} },
{ "max77812_CPU", 5000, 250000, 600000, 1525000, REGULATOR_BC1, MAX77812_REG_M4_VOUT, MAX77812_REG_EN_CTRL, MAX77812_BUCK_VOLT_MASK, {{ MAX77812_EN_CTRL_EN_M4_MASK, MAX77812_EN_CTRL_EN_M4_SHIFT, 0, 0 }} },
//{ "max77812_GPU", 5000, 250000, 600000, 1525000, REGULATOR_BC1, MAX77812_REG_M1_VOUT, MAX77812_REG_EN_CTRL, MAX77812_BUCK_VOLT_MASK, {{ MAX77812_EN_CTRL_EN_M1_MASK, MAX77812_EN_CTRL_EN_M1_SHIFT, 0, 0 }} },
//{ "max77812_RAM", 5000, 250000, 600000, 1525000, REGULATOR_BC1, MAX77812_REG_M3_VOUT, MAX77812_REG_EN_CTRL, MAX77812_BUCK_VOLT_MASK, {{ MAX77812_EN_CTRL_EN_M3_MASK, MAX77812_EN_CTRL_EN_M3_SHIFT, 0, 0 }} } // Only on PHASE211 configuration.
};
static void _max77620_set_reg(u8 reg, u8 val)
static u8 _max77812_get_address()
{
static u8 max77812_i2c_addr = 0;
if (max77812_i2c_addr)
return max77812_i2c_addr;
max77812_i2c_addr =
!(FUSE(FUSE_RESERVED_ODM28_T210B01) & 1) ? MAX77812_PHASE31_CPU_I2C_ADDR : MAX77812_PHASE211_CPU_I2C_ADDR;
return max77812_i2c_addr;
}
static u8 _max7762x_get_i2c_address(u32 id)
{
const max77620_regulator_t *reg = &_pmic_regulators[id];
// Choose the correct i2c address.
switch (reg->type)
{
case REGULATOR_SD:
case REGULATOR_LDO:
return MAX77620_I2C_ADDR;
case REGULATOR_BC0:
return (id == REGULATOR_CPU0 ? MAX77621_CPU_I2C_ADDR : MAX77621_GPU_I2C_ADDR);
case REGULATOR_BC1:
return _max77812_get_address();
default:
return 0;
}
}
static void _max7762x_set_reg(u8 addr, u8 reg, u8 val)
{
u32 retries = 100;
while (retries)
{
if (i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, reg, val))
if (i2c_send_byte(I2C_5, addr, reg, val))
break;
usleep(100);
usleep(50);
retries--;
}
}
int max77620_regulator_get_status(u32 id)
{
if (id > REGULATOR_MAX)
if (id > REGULATOR_LDO8)
return 0;
const max77620_regulator_t *reg = &_pmic_regulators[id];
// SD power OK status.
if (reg->type == REGULATOR_SD)
return (i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_STATSD) & reg->status_mask) ? 0 : 1;
return (i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, reg->cfg_addr) & 8) ? 1 : 0;
{
u8 mask = 1u << (7 - id);
return (i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_STATSD) & mask) ? 0 : 1;
}
// LDO power OK status.
return (i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, reg->cfg_addr) & MAX77620_LDO_CFG2_POK_MASK) ? 1 : 0;
}
int max77620_regulator_config_fps(u32 id)
{
if (id > REGULATOR_MAX)
if (id > REGULATOR_LDO8)
return 0;
const max77620_regulator_t *reg = &_pmic_regulators[id];
_max77620_set_reg(reg->fps_addr,
(reg->fps_src << MAX77620_FPS_SRC_SHIFT) | (reg->pu_period << MAX77620_FPS_PU_PERIOD_SHIFT) | (reg->pd_period));
// Set FPS configuration.
_max7762x_set_reg(MAX77620_I2C_ADDR,
reg->fps.fps_addr,
(reg->fps.fps_src << MAX77620_FPS_SRC_SHIFT) |
(reg->fps.pu_period << MAX77620_FPS_PU_PERIOD_SHIFT) |
(reg->fps.pd_period << MAX77620_FPS_PD_PERIOD_SHIFT));
return 1;
}
int max77620_regulator_set_voltage(u32 id, u32 mv)
int max7762x_regulator_set_voltage(u32 id, u32 mv)
{
if (id > REGULATOR_MAX)
return 0;
const max77620_regulator_t *reg = &_pmic_regulators[id];
if (mv < reg->mv_min || mv > reg->mv_max)
if (mv < reg->uv_min || mv > reg->uv_max)
return 0;
u32 mult = (mv + reg->mv_step - 1 - reg->mv_min) / reg->mv_step;
u8 val = i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, reg->volt_addr);
u8 addr = _max7762x_get_i2c_address(id);
// Calculate voltage multiplier.
u32 mult = (mv + reg->uv_step - 1 - reg->uv_min) / reg->uv_step;
u8 val = i2c_recv_byte(I2C_5, addr, reg->volt_addr);
val = (val & ~reg->volt_mask) | (mult & reg->volt_mask);
_max77620_set_reg(reg->volt_addr, val);
// Set voltage.
_max7762x_set_reg(addr, reg->volt_addr, val);
// If max77621 set DVS voltage also.
if (reg->type == REGULATOR_BC0)
_max7762x_set_reg(addr, reg->cfg_addr, MAX77621_VOUT_ENABLE_MASK | val);
// Wait for ramp up/down delay.
usleep(1000);
return 1;
}
int max77620_regulator_enable(u32 id, int enable)
int max7762x_regulator_enable(u32 id, bool enable)
{
u8 reg_addr;
u8 enable_val;
u8 enable_mask;
u8 enable_shift;
if (id > REGULATOR_MAX)
return 0;
const max77620_regulator_t *reg = &_pmic_regulators[id];
u32 addr = reg->type == REGULATOR_SD ? reg->cfg_addr : reg->volt_addr;
u8 val = i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, addr);
// Choose the correct i2c and register addresses and mask/shift for each type.
switch (reg->type)
{
case REGULATOR_SD:
reg_addr = reg->cfg_addr;
enable_val = MAX77620_POWER_MODE_NORMAL;
enable_mask = MAX77620_SD_POWER_MODE_MASK;
enable_shift = MAX77620_SD_POWER_MODE_SHIFT;
break;
case REGULATOR_LDO:
reg_addr = reg->volt_addr;
enable_val = MAX77620_POWER_MODE_NORMAL;
enable_mask = MAX77620_LDO_POWER_MODE_MASK;
enable_shift = MAX77620_LDO_POWER_MODE_SHIFT;
break;
case REGULATOR_BC0:
reg_addr = reg->volt_addr;
enable_val = MAX77621_VOUT_ENABLE;
enable_mask = MAX77621_DVC_DVS_ENABLE_MASK;
enable_shift = MAX77621_DVC_DVS_ENABLE_SHIFT;
break;
case REGULATOR_BC1:
reg_addr = reg->cfg_addr;
enable_val = MAX77812_EN_CTRL_ENABLE;
enable_mask = reg->enable.mask;
enable_shift = reg->enable.shift;
break;
default:
return 0;
}
u8 addr = _max7762x_get_i2c_address(id);
// Read and enable/disable.
u8 val = i2c_recv_byte(I2C_5, addr, reg_addr);
val &= ~enable_mask;
if (enable)
val = (val & ~reg->enable_mask) | ((MAX77620_POWER_MODE_NORMAL << reg->enable_shift) & reg->enable_mask);
else
val &= ~reg->enable_mask;
_max77620_set_reg(addr, val);
val |= (enable_val << enable_shift);
// Set enable.
_max7762x_set_reg(addr, reg_addr, val);
// Wait for enable/disable ramp delay.
usleep(1000);
return 1;
}
// LDO only.
int max77620_regulator_set_volt_and_flags(u32 id, u32 mv, u8 flags)
void max77620_config_gpio(u32 gpio_id, bool enable)
{
if (id > REGULATOR_MAX)
return 0;
if (gpio_id > 7)
return;
// Configure as standard GPIO.
u8 val = i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_AME_GPIO);
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_AME_GPIO, val & ~BIT(gpio_id));
// Set GPIO configuration.
if (enable)
val = MAX77620_CNFG_GPIO_OUTPUT_VAL_HIGH | MAX77620_CNFG_GPIO_DIR_OUTPUT | MAX77620_CNFG_GPIO_DRV_PUSHPULL;
else
val = MAX77620_CNFG_GPIO_DIR_INPUT | MAX77620_CNFG_GPIO_DRV_OPENDRAIN;
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_GPIO0 + gpio_id, val);
}
void max77621_config_default(u32 id, bool por)
{
const max77620_regulator_t *reg = &_pmic_regulators[id];
if (mv < reg->mv_min || mv > reg->mv_max)
return 0;
if (reg->type != REGULATOR_BC0)
return;
u32 mult = (mv + reg->mv_step - 1 - reg->mv_min) / reg->mv_step;
u8 val = ((flags << reg->enable_shift) & ~reg->volt_mask) | (mult & reg->volt_mask);
_max77620_set_reg(reg->volt_addr, val);
usleep(1000);
u8 addr = _max7762x_get_i2c_address(id);
return 1;
if (por)
{
// Set voltage and disable power before changing the inductor.
max7762x_regulator_set_voltage(id, 1000000);
max7762x_regulator_enable(id, false);
// Configure to default.
i2c_send_byte(I2C_5, addr, MAX77621_CONTROL1_REG, reg->ctrl.ctrl1_por);
i2c_send_byte(I2C_5, addr, MAX77621_CONTROL2_REG, reg->ctrl.ctrl2_por);
}
else
{
i2c_send_byte(I2C_5, addr, MAX77621_CONTROL1_REG, reg->ctrl.ctrl1_hos);
i2c_send_byte(I2C_5, addr, MAX77621_CONTROL2_REG, reg->ctrl.ctrl2_hos);
}
}
void max77620_config_default()
{
for (u32 i = 1; i <= REGULATOR_MAX; i++)
// Check if Erista OTP.
if (i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_CID4) != 0x35)
return;
// Set default voltages and enable regulators.
for (u32 i = 1; i <= REGULATOR_LDO8; i++)
{
i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_CID4);
max77620_regulator_config_fps(i);
max77620_regulator_set_voltage(i, _pmic_regulators[i].mv_default);
if (_pmic_regulators[i].fps_src != MAX77620_FPS_SRC_NONE)
max77620_regulator_enable(i, 1);
max7762x_regulator_set_voltage(i, _pmic_regulators[i].uv_default);
if (_pmic_regulators[i].fps.fps_src != MAX77620_FPS_SRC_NONE)
max7762x_regulator_enable(i, true);
}
_max77620_set_reg(MAX77620_REG_SD_CFG2, 4);
// Enable SD0 output voltage sense and disable for SD1. Additionally disable the reserved bit.
_max7762x_set_reg(MAX77620_I2C_ADDR, MAX77620_REG_SD_CFG2, MAX77620_SD_CNF2_ROVS_EN_SD0);
}
void max77620_low_battery_monitor_config(bool enable)
{
_max77620_set_reg(MAX77620_REG_CNFGGLBL1,
MAX77620_CNFGGLBL1_LBDAC_EN | (enable ? MAX77620_CNFGGLBL1_MPPLD : 0) |
MAX77620_CNFGGLBL1_LBHYST_200 | MAX77620_CNFGGLBL1_LBDAC_2800);
_max7762x_set_reg(MAX77620_I2C_ADDR, MAX77620_REG_CNFGGLBL1,
MAX77620_CNFGGLBL1_LBDAC_EN |
(enable ? MAX77620_CNFGGLBL1_MPPLD : 0) |
MAX77620_CNFGGLBL1_LBHYST_200 |
MAX77620_CNFGGLBL1_LBDAC_2800);
}

View file

@ -1,6 +1,6 @@
/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2019 CTCaer
* Copyright (c) 2019-2020 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
@ -45,10 +45,10 @@
*/
/*! MAX77620 partitions. */
#define REGULATOR_SD0 0
#define REGULATOR_SD1 1
#define REGULATOR_SD2 2
#define REGULATOR_SD3 3
#define REGULATOR_SD0 0
#define REGULATOR_SD1 1
#define REGULATOR_SD2 2
#define REGULATOR_SD3 3
#define REGULATOR_LDO0 4
#define REGULATOR_LDO1 5
#define REGULATOR_LDO2 6
@ -58,26 +58,40 @@
#define REGULATOR_LDO6 10
#define REGULATOR_LDO7 11
#define REGULATOR_LDO8 12
#define REGULATOR_MAX 12
#define REGULATOR_CPU0 13
#define REGULATOR_GPU0 14
#define REGULATOR_CPU1 15
//#define REGULATOR_GPU1 16
//#define REGULATOR_GPU1 17
#define REGULATOR_MAX 15
#define MAX77621_CPU_I2C_ADDR 0x1B
#define MAX77621_GPU_I2C_ADDR 0x1C
#define MAX77621_VOUT_REG 0
#define MAX77621_VOUT_DVS_REG 1
#define MAX77621_CONTROL1_REG 2
#define MAX77621_CONTROL2_REG 3
/* MAX77621_VOUT */
#define MAX77621_VOUT_ENABLE BIT(7)
#define MAX77621_VOUT_MASK 0x7F
#define MAX77621_VOUT_0_95V 0x37
#define MAX77621_VOUT_1_09V 0x4F
#define MAX77621_VOUT_REG 0x00
#define MAX77621_VOUT_DVS_REG 0x01
#define MAX77621_CONTROL1_REG 0x02
#define MAX77621_CONTROL2_REG 0x03
#define MAX77621_CHIPID1_REG 0x04
#define MAX77621_CHIPID2_REG 0x05
/* MAX77621_VOUT_DVC_DVS */
#define MAX77621_DVS_VOUT_MASK 0x7F
#define MAX77621_DVC_DVS_VOLT_MASK 0x7F
#define MAX77621_DVC_DVS_ENABLE_SHIFT 7
#define MAX77621_DVC_DVS_ENABLE_MASK (1 << MAX77621_DVC_DVS_ENABLE_SHIFT)
/* MAX77621_VOUT */
#define MAX77621_VOUT_DISABLE 0
#define MAX77621_VOUT_ENABLE 1
#define MAX77621_VOUT_ENABLE_MASK (MAX77621_VOUT_ENABLE << MAX77621_DVC_DVS_ENABLE_SHIFT)
/* MAX77621_CONTROL1 */
#define MAX77621_RAMP_12mV_PER_US 0x0
#define MAX77621_RAMP_25mV_PER_US 0x1
#define MAX77621_RAMP_50mV_PER_US 0x2
#define MAX77621_RAMP_200mV_PER_US 0x3
#define MAX77621_RAMP_MASK 0x3
#define MAX77621_FREQSHIFT_9PER BIT(2)
#define MAX77621_BIAS_ENABLE BIT(3)
#define MAX77621_AD_ENABLE BIT(4)
@ -85,34 +99,50 @@
#define MAX77621_FPWM_EN_M BIT(6)
#define MAX77621_SNS_ENABLE BIT(7)
#define MAX77621_RAMP_12mV_PER_US 0x0
#define MAX77621_RAMP_25mV_PER_US 0x1
#define MAX77621_RAMP_50mV_PER_US 0x2
#define MAX77621_RAMP_200mV_PER_US 0x3
#define MAX77621_RAMP_MASK 0x3
/* MAX77621_CONTROL2 */
#define MAX77621_FT_ENABLE BIT(4)
#define MAX77621_DISCH_ENBABLE BIT(5)
#define MAX77621_WDTMR_ENABLE BIT(6)
#define MAX77621_T_JUNCTION_120 BIT(7)
#define MAX77621_INDUCTOR_MIN_30_PER 0
#define MAX77621_INDUCTOR_NOMINAL 1
#define MAX77621_INDUCTOR_PLUS_30_PER 2
#define MAX77621_INDUCTOR_PLUS_60_PER 3
#define MAX77621_INDUCTOR_MASK 3
#define MAX77621_CKKADV_TRIP_DISABLE 0xC
#define MAX77621_CKKADV_TRIP_75mV_PER_US 0x0
#define MAX77621_CKKADV_TRIP_150mV_PER_US 0x4
#define MAX77621_CKKADV_TRIP_75mV_PER_US_HIST_DIS 0x8
#define MAX77621_CKKADV_TRIP_150mV_PER_US BIT(2)
#define MAX77621_CKKADV_TRIP_75mV_PER_US_HIST_DIS BIT(3)
#define MAX77621_CKKADV_TRIP_DISABLE (BIT(2) | BIT(3))
#define MAX77621_CKKADV_TRIP_MASK (BIT(2) | BIT(3))
#define MAX77621_INDUCTOR_MIN_30_PER 0x0
#define MAX77621_INDUCTOR_NOMINAL 0x1
#define MAX77621_INDUCTOR_PLUS_30_PER 0x2
#define MAX77621_INDUCTOR_PLUS_60_PER 0x3
#define MAX77621_FT_ENABLE BIT(4)
#define MAX77621_DISCH_ENABLE BIT(5)
#define MAX77621_WDTMR_ENABLE BIT(6)
#define MAX77621_T_JUNCTION_120 BIT(7)
#define MAX77621_CPU_CTRL1_POR_DEFAULT (MAX77621_RAMP_50mV_PER_US)
#define MAX77621_CPU_CTRL1_HOS_DEFAULT (MAX77621_AD_ENABLE | \
MAX77621_NFSR_ENABLE | \
MAX77621_SNS_ENABLE | \
MAX77621_RAMP_12mV_PER_US)
#define MAX77621_CPU_CTRL2_POR_DEFAULT (MAX77621_T_JUNCTION_120 | \
MAX77621_FT_ENABLE | \
MAX77621_CKKADV_TRIP_75mV_PER_US_HIST_DIS | \
MAX77621_CKKADV_TRIP_150mV_PER_US | \
MAX77621_INDUCTOR_NOMINAL)
#define MAX77621_CPU_CTRL2_HOS_DEFAULT (MAX77621_T_JUNCTION_120 | \
MAX77621_WDTMR_ENABLE | \
MAX77621_CKKADV_TRIP_75mV_PER_US | \
MAX77621_INDUCTOR_NOMINAL)
#define MAX77621_CTRL_HOS_CFG 0
#define MAX77621_CTRL_POR_CFG 1
int max77620_regulator_get_status(u32 id);
int max77620_regulator_config_fps(u32 id);
int max77620_regulator_set_voltage(u32 id, u32 mv);
int max77620_regulator_enable(u32 id, int enable);
int max77620_regulator_set_volt_and_flags(u32 id, u32 mv, u8 flags);
int max7762x_regulator_set_voltage(u32 id, u32 mv);
int max7762x_regulator_enable(u32 id, bool enable);
void max77620_config_gpio(u32 id, bool enable);
void max77620_config_default();
void max77620_low_battery_monitor_config(bool enable);
void max77621_config_default(u32 id, bool por);
#endif

View file

@ -17,8 +17,8 @@
#ifndef _MAX77812_H_
#define _MAX77812_H_
#define MAX77812_PHASE31_CPU_I2C_ADDR 0x31
#define MAX77812_PHASE211_CPU_I2C_ADDR 0x33
#define MAX77812_PHASE31_CPU_I2C_ADDR 0x31 // 2 Outputs: 3-phase M1 + 1-phase M4.
#define MAX77812_PHASE211_CPU_I2C_ADDR 0x33 // 3 Outputs: 2-phase M1 + 1-phase M3 + 1-phase M4.
#define MAX77812_REG_RSET 0x00
#define MAX77812_REG_INT_SRC 0x01
@ -27,7 +27,15 @@
#define MAX77812_REG_TOPSYS_INT_M 0x04
#define MAX77812_REG_TOPSYS_STAT 0x05
#define MAX77812_REG_EN_CTRL 0x06
#define MAX77812_EN_CTRL_EN_M4 BIT(6)
#define MAX77812_EN_CTRL_ENABLE 1
#define MAX77812_EN_CTRL_EN_M1_SHIFT 0
#define MAX77812_EN_CTRL_EN_M1_MASK (1 << MAX77812_EN_CTRL_EN_M1_SHIFT)
#define MAX77812_EN_CTRL_EN_M2_SHIFT 2
#define MAX77812_EN_CTRL_EN_M2_MASK (1 << MAX77812_EN_CTRL_EN_M2_SHIFT)
#define MAX77812_EN_CTRL_EN_M3_SHIFT 4
#define MAX77812_EN_CTRL_EN_M3_MASK (1 << MAX77812_EN_CTRL_EN_M3_SHIFT)
#define MAX77812_EN_CTRL_EN_M4_SHIFT 6
#define MAX77812_EN_CTRL_EN_M4_MASK (1 << MAX77812_EN_CTRL_EN_M4_SHIFT)
#define MAX77812_REG_STUP_DLY2 0x07
#define MAX77812_REG_STUP_DLY3 0x08
#define MAX77812_REG_STUP_DLY4 0x09
@ -46,11 +54,10 @@
#define MAX77812_REG_BUCK_INT 0x20
#define MAX77812_REG_BUCK_INT_M 0x21
#define MAX77812_REG_BUCK_STAT 0x22
#define MAX77812_REG_M1_VOUT 0x23
#define MAX77812_REG_M1_VOUT 0x23 // GPU.
#define MAX77812_REG_M2_VOUT 0x24
#define MAX77812_REG_M3_VOUT 0x25
#define MAX77812_REG_M4_VOUT 0x26
#define MAX77812_M4_VOUT_0_80V 0x6E
#define MAX77812_REG_M3_VOUT 0x25 // DRAM on PHASE211.
#define MAX77812_REG_M4_VOUT 0x26 // CPU.
#define MAX77812_REG_M1_VOUT_D 0x27
#define MAX77812_REG_M2_VOUT_D 0x28
#define MAX77812_REG_M3_VOUT_D 0x29
@ -66,6 +73,8 @@
#define MAX77812_REG_GLB_CFG1 0x33
#define MAX77812_REG_GLB_CFG2 0x34
#define MAX77812_REG_GLB_CFG3 0x35
/*! Protected area and settings only for MAX77812_REG_VERSION 4 */
#define MAX77812_REG_GLB_CFG4 0x36
#define MAX77812_REG_GLB_CFG5 0x37
#define MAX77812_REG_GLB_CFG6 0x38
@ -91,10 +100,6 @@
#define MAX77812_ES2_VERSION 0x04
#define MAX77812_QS_VERSION 0x05
#define MAX77812_VOUT_MASK 0xFF
#define MAX77812_VOUT_N_VOLTAGE 0xFF
#define MAX77812_VOUT_VMIN 250000
#define MAX77812_VOUT_VMAX 1525000
#define MAX77812_VOUT_STEP 5000
#define MAX77812_BUCK_VOLT_MASK 0xFF
#endif

View file

@ -21,8 +21,9 @@
#include <utils/types.h>
static u8 reg_5v_dev = 0;
static bool batt_src = false;
void regulator_enable_5v(u8 dev)
void regulator_5v_enable(u8 dev)
{
// The power supply selection from battery or USB is automatic.
if (!reg_5v_dev)
@ -32,6 +33,7 @@ void regulator_enable_5v(u8 dev)
gpio_config(GPIO_PORT_A, GPIO_PIN_5, GPIO_MODE_GPIO);
gpio_output_enable(GPIO_PORT_A, GPIO_PIN_5, GPIO_OUTPUT_ENABLE);
gpio_write(GPIO_PORT_A, GPIO_PIN_5, GPIO_HIGH);
batt_src = true;
// Fan and Rail power from USB 5V VDD.
PINMUX_AUX(PINMUX_AUX_USB_VBUS_EN0) = PINMUX_LPDR | 1;
@ -47,7 +49,7 @@ void regulator_enable_5v(u8 dev)
reg_5v_dev |= dev;
}
void regulator_disable_5v(u8 dev)
void regulator_5v_disable(u8 dev)
{
reg_5v_dev &= ~dev;
@ -58,6 +60,7 @@ void regulator_disable_5v(u8 dev)
gpio_output_enable(GPIO_PORT_A, GPIO_PIN_5, GPIO_OUTPUT_DISABLE);
gpio_config(GPIO_PORT_A, GPIO_PIN_5, GPIO_MODE_SPIO);
PINMUX_AUX(PINMUX_AUX_SATA_LED_ACTIVE) = PINMUX_PARKED | PINMUX_INPUT_ENABLE;
batt_src = false;
// Rail power from USB 5V VDD.
gpio_write(GPIO_PORT_CC, GPIO_PIN_4, GPIO_LOW);
@ -70,7 +73,15 @@ void regulator_disable_5v(u8 dev)
}
}
bool regulator_get_5v_dev_enabled(u8 dev)
bool regulator_5v_get_dev_enabled(u8 dev)
{
return (reg_5v_dev & dev);
}
void regulator_5v_batt_src_enable(bool enable)
{
if (enable && !batt_src)
gpio_write(GPIO_PORT_A, GPIO_PIN_5, GPIO_HIGH);
else if (!enable && batt_src)
gpio_write(GPIO_PORT_A, GPIO_PIN_5, GPIO_LOW);
}

View file

@ -27,8 +27,9 @@ enum
REGULATOR_5V_ALL = 0xFF
};
void regulator_enable_5v(u8 dev);
void regulator_disable_5v(u8 dev);
bool regulator_get_5v_dev_enabled(u8 dev);
void regulator_5v_enable(u8 dev);
void regulator_5v_disable(u8 dev);
bool regulator_5v_get_dev_enabled(u8 dev);
void regulator_5v_batt_src_enable(bool enable);
#endif

View file

@ -16,7 +16,6 @@
*/
#include <soc/ccplex.h>
#include <soc/fuse.h>
#include <soc/hw_init.h>
#include <soc/i2c.h>
#include <soc/clock.h>
@ -29,27 +28,24 @@
void _ccplex_enable_power_t210()
{
u8 tmp = i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_AME_GPIO); // Get current pinmuxing
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_AME_GPIO, tmp & ~BIT(5)); // Disable GPIO5 pinmuxing.
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_GPIO5, MAX77620_CNFG_GPIO_DRV_PUSHPULL | MAX77620_CNFG_GPIO_OUTPUT_VAL_HIGH);
// Configure GPIO5 and enable output in order to power CPU pmic.
max77620_config_gpio(5, MAX77620_GPIO_OUTPUT_ENABLE);
// Enable cores power.
// Configure CPU pmic.
// 1-3.x: MAX77621_NFSR_ENABLE.
i2c_send_byte(I2C_5, MAX77621_CPU_I2C_ADDR, MAX77621_CONTROL1_REG,
MAX77621_AD_ENABLE | MAX77621_NFSR_ENABLE | MAX77621_SNS_ENABLE | MAX77621_RAMP_12mV_PER_US);
// 1.0.0-3.x: MAX77621_T_JUNCTION_120 | MAX77621_CKKADV_TRIP_DISABLE | MAX77621_INDUCTOR_NOMINAL.
i2c_send_byte(I2C_5, MAX77621_CPU_I2C_ADDR, MAX77621_CONTROL2_REG,
MAX77621_T_JUNCTION_120 | MAX77621_WDTMR_ENABLE | MAX77621_CKKADV_TRIP_75mV_PER_US| MAX77621_INDUCTOR_NOMINAL);
i2c_send_byte(I2C_5, MAX77621_CPU_I2C_ADDR, MAX77621_VOUT_REG, MAX77621_VOUT_ENABLE | MAX77621_VOUT_0_95V);
i2c_send_byte(I2C_5, MAX77621_CPU_I2C_ADDR, MAX77621_VOUT_DVS_REG, MAX77621_VOUT_ENABLE | MAX77621_VOUT_0_95V);
max77621_config_default(REGULATOR_CPU0, MAX77621_CTRL_HOS_CFG);
// Set voltage and enable cores power.
max7762x_regulator_set_voltage(REGULATOR_CPU0, 950000);
max7762x_regulator_enable(REGULATOR_CPU0, true);
}
void _ccplex_enable_power_t210b01()
{
u8 pmic_cpu_addr = !(FUSE(FUSE_RESERVED_ODM28) & 1) ? MAX77812_PHASE31_CPU_I2C_ADDR : MAX77812_PHASE211_CPU_I2C_ADDR;
u8 tmp = i2c_recv_byte(I2C_5, pmic_cpu_addr, MAX77812_REG_EN_CTRL);
i2c_send_byte(I2C_5, pmic_cpu_addr, MAX77812_REG_EN_CTRL, tmp | MAX77812_EN_CTRL_EN_M4);
i2c_send_byte(I2C_5, pmic_cpu_addr, MAX77812_REG_M4_VOUT, MAX77812_M4_VOUT_0_80V);
// Set voltage and enable cores power.
max7762x_regulator_set_voltage(REGULATOR_CPU1, 800000);
max7762x_regulator_enable(REGULATOR_CPU1, true);
}
void ccplex_boot_cpu0(u32 entry)
@ -62,24 +58,31 @@ void ccplex_boot_cpu0(u32 entry)
else
_ccplex_enable_power_t210b01();
if (!(CLOCK(CLK_RST_CONTROLLER_PLLX_BASE) & 0x40000000)) // PLLX_ENABLE.
// Enable PLLX and set it to 300 MHz.
if (!(CLOCK(CLK_RST_CONTROLLER_PLLX_BASE) & PLLX_BASE_ENABLE)) // PLLX_ENABLE.
{
CLOCK(CLK_RST_CONTROLLER_PLLX_MISC_3) &= 0xFFFFFFF7; // Disable IDDQ.
usleep(2);
CLOCK(CLK_RST_CONTROLLER_PLLX_BASE) = 0x80404E02;
CLOCK(CLK_RST_CONTROLLER_PLLX_BASE) = 0x404E02;
// Bypass dividers.
CLOCK(CLK_RST_CONTROLLER_PLLX_BASE) = PLLX_BASE_BYPASS | (4 << 20) | (78 << 8) | 2; // P div: 4 (5), N div: 78, M div: 2.
// Disable bypass
CLOCK(CLK_RST_CONTROLLER_PLLX_BASE) = (4 << 20) | (78 << 8) | 2;
// Set PLLX_LOCK_ENABLE.
CLOCK(CLK_RST_CONTROLLER_PLLX_MISC) = (CLOCK(CLK_RST_CONTROLLER_PLLX_MISC) & 0xFFFBFFFF) | 0x40000;
CLOCK(CLK_RST_CONTROLLER_PLLX_BASE) = 0x40404E02;
// Enable PLLX.
CLOCK(CLK_RST_CONTROLLER_PLLX_BASE) = PLLX_BASE_ENABLE | (4 << 20) | (78 << 8) | 2;
}
while (!(CLOCK(CLK_RST_CONTROLLER_PLLX_BASE) & 0x8000000))
// Wait for PLL to stabilize.
while (!(CLOCK(CLK_RST_CONTROLLER_PLLX_BASE) & PLLX_BASE_LOCK))
;
// Configure MSELECT source and enable clock.
// Configure MSELECT source and enable clock to 102MHz.
CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_MSELECT) = (CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_MSELECT) & 0x1FFFFF00) | 6;
CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_V) = (CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_V) & ~BIT(CLK_V_MSELECT)) | BIT(CLK_V_MSELECT);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_V_SET) = BIT(CLK_V_MSELECT);
// Configure initial CPU clock frequency and enable clock.
CLOCK(CLK_RST_CONTROLLER_CCLK_BURST_POLICY) = 0x20008888;
CLOCK(CLK_RST_CONTROLLER_CCLK_BURST_POLICY) = 0x20008888; // PLLX_OUT0_LJ.
CLOCK(CLK_RST_CONTROLLER_SUPER_CCLK_DIVIDER) = 0x80000000;
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_V_SET) = BIT(CLK_V_CPUG);
@ -88,12 +91,12 @@ void ccplex_boot_cpu0(u32 entry)
// CAR2PMC_CPU_ACK_WIDTH should be set to 0.
CLOCK(CLK_RST_CONTROLLER_CPU_SOFTRST_CTRL2) &= 0xFFFFF000;
// Enable CPU rail.
pmc_enable_partition(0, 1);
// Enable CPU main rail.
pmc_enable_partition(POWER_RAIL_CRAIL, ENABLE);
// Enable cluster 0 non-CPU rail.
pmc_enable_partition(15, 1);
// Enable CE0 rail.
pmc_enable_partition(14, 1);
pmc_enable_partition(POWER_RAIL_C0NC, ENABLE);
// Enable CPU0 rail.
pmc_enable_partition(POWER_RAIL_CE0, ENABLE);
// Request and wait for RAM repair.
FLOW_CTLR(FLOW_CTLR_RAM_REPAIR) = 1;
@ -113,7 +116,7 @@ void ccplex_boot_cpu0(u32 entry)
// MC(MC_TZ_SECURITY_CTRL) = 1;
// Clear MSELECT reset.
CLOCK(CLK_RST_CONTROLLER_RST_DEVICES_V) &= ~BIT(CLK_V_MSELECT);
CLOCK(CLK_RST_CONTROLLER_RST_DEV_V_CLR) = BIT(CLK_V_MSELECT);
// Clear NONCPU reset.
CLOCK(CLK_RST_CONTROLLER_RST_CPUG_CMPLX_CLR) = 0x20000000;
// Clear CPU0 reset.

View file

@ -21,6 +21,23 @@
#include <storage/sdmmc.h>
#include <utils/util.h>
typedef struct _clock_osc_t
{
u32 freq;
u16 min;
u16 max;
} clock_osc_t;
static const clock_osc_t _clock_osc_cnt[] = {
{ 12000, 706, 757 },
{ 13000, 766, 820 },
{ 16800, 991, 1059 },
{ 19200, 1133, 1210 },
{ 26000, 1535, 1638 },
{ 38400, 2268, 2418 },
{ 48000, 2836, 3023 }
};
/* clock_t: reset, enable, source, index, clk_src, clk_div */
static const clock_t _clock_uart[] = {
@ -42,7 +59,7 @@ static const clock_t _clock_i2c[] = {
};
static clock_t _clock_se = {
CLK_RST_CONTROLLER_RST_DEVICES_V, CLK_RST_CONTROLLER_CLK_OUT_ENB_V, CLK_RST_CONTROLLER_CLK_SOURCE_SE, CLK_V_SE, 0, 0
CLK_RST_CONTROLLER_RST_DEVICES_V, CLK_RST_CONTROLLER_CLK_OUT_ENB_V, CLK_RST_CONTROLLER_CLK_SOURCE_SE, CLK_V_SE, 0, 0 // 408MHz.
};
static clock_t _clock_tzram = {
@ -50,19 +67,19 @@ static clock_t _clock_tzram = {
};
static clock_t _clock_host1x = {
CLK_RST_CONTROLLER_RST_DEVICES_L, CLK_RST_CONTROLLER_CLK_OUT_ENB_L, CLK_RST_CONTROLLER_CLK_SOURCE_HOST1X, CLK_L_HOST1X, 4, 3
CLK_RST_CONTROLLER_RST_DEVICES_L, CLK_RST_CONTROLLER_CLK_OUT_ENB_L, CLK_RST_CONTROLLER_CLK_SOURCE_HOST1X, CLK_L_HOST1X, 4, 3 // 163.2MHz.
};
static clock_t _clock_tsec = {
CLK_RST_CONTROLLER_RST_DEVICES_U, CLK_RST_CONTROLLER_CLK_OUT_ENB_U, CLK_RST_CONTROLLER_CLK_SOURCE_TSEC, CLK_U_TSEC, 0, 2
CLK_RST_CONTROLLER_RST_DEVICES_U, CLK_RST_CONTROLLER_CLK_OUT_ENB_U, CLK_RST_CONTROLLER_CLK_SOURCE_TSEC, CLK_U_TSEC, 0, 2 // 204MHz.
};
static clock_t _clock_sor_safe = {
CLK_RST_CONTROLLER_RST_DEVICES_Y, CLK_RST_CONTROLLER_CLK_OUT_ENB_Y, CLK_NO_SOURCE, CLK_Y_SOR_SAFE, 0, 0
};
static clock_t _clock_sor0 = {
CLK_RST_CONTROLLER_RST_DEVICES_X, CLK_RST_CONTROLLER_CLK_OUT_ENB_X, CLK_NO_SOURCE, CLK_X_SOR0, 0, 0
CLK_RST_CONTROLLER_RST_DEVICES_X, CLK_RST_CONTROLLER_CLK_OUT_ENB_X, CLK_NOT_USED, CLK_X_SOR0, 0, 0
};
static clock_t _clock_sor1 = {
CLK_RST_CONTROLLER_RST_DEVICES_X, CLK_RST_CONTROLLER_CLK_OUT_ENB_X, CLK_RST_CONTROLLER_CLK_SOURCE_SOR1, CLK_X_SOR1, 0, 2
CLK_RST_CONTROLLER_RST_DEVICES_X, CLK_RST_CONTROLLER_CLK_OUT_ENB_X, CLK_RST_CONTROLLER_CLK_SOURCE_SOR1, CLK_X_SOR1, 0, 2 //204MHz.
};
static clock_t _clock_kfuse = {
CLK_RST_CONTROLLER_RST_DEVICES_H, CLK_RST_CONTROLLER_CLK_OUT_ENB_H, CLK_NO_SOURCE, CLK_H_KFUSE, 0, 0
@ -72,11 +89,11 @@ static clock_t _clock_cl_dvfs = {
CLK_RST_CONTROLLER_RST_DEVICES_W, CLK_RST_CONTROLLER_CLK_OUT_ENB_W, CLK_NO_SOURCE, CLK_W_DVFS, 0, 0
};
static clock_t _clock_coresight = {
CLK_RST_CONTROLLER_RST_DEVICES_U, CLK_RST_CONTROLLER_CLK_OUT_ENB_U, CLK_RST_CONTROLLER_CLK_SOURCE_CSITE, CLK_U_CSITE, 0, 4
CLK_RST_CONTROLLER_RST_DEVICES_U, CLK_RST_CONTROLLER_CLK_OUT_ENB_U, CLK_RST_CONTROLLER_CLK_SOURCE_CSITE, CLK_U_CSITE, 0, 4 // 136MHz.
};
static clock_t _clock_pwm = {
CLK_RST_CONTROLLER_RST_DEVICES_L, CLK_RST_CONTROLLER_CLK_OUT_ENB_L, CLK_RST_CONTROLLER_CLK_SOURCE_PWM, CLK_L_PWM, 6, 4 // Fref: 6.4MHz. Stock PLLP / 54: 7.55MHz.
CLK_RST_CONTROLLER_RST_DEVICES_L, CLK_RST_CONTROLLER_CLK_OUT_ENB_L, CLK_RST_CONTROLLER_CLK_SOURCE_PWM, CLK_L_PWM, 6, 4 // Fref: 6.4MHz. HOS: PLLP / 54 = 7.55MHz.
};
static clock_t _clock_sdmmc_legacy_tm = {
@ -218,13 +235,13 @@ void clock_disable_sor1()
void clock_enable_kfuse()
{
u32 kfuse_clk_unmask = ~BIT(CLK_H_KFUSE);
CLOCK(CLK_RST_CONTROLLER_RST_DEVICES_H) = (CLOCK(CLK_RST_CONTROLLER_RST_DEVICES_H) & kfuse_clk_unmask) | BIT(CLK_H_KFUSE);
CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_H) &= kfuse_clk_unmask;
CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_H) = (CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_H) & kfuse_clk_unmask) | BIT(CLK_H_KFUSE);
usleep(10);
CLOCK(CLK_RST_CONTROLLER_RST_DEVICES_H) &= kfuse_clk_unmask;
usleep(20);
CLOCK(CLK_RST_CONTROLLER_RST_DEV_H_SET) = BIT(CLK_H_KFUSE);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_H_CLR) = BIT(CLK_H_KFUSE);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_H_SET) = BIT(CLK_H_KFUSE);
usleep(10); // Wait 10s to prevent glitching.
CLOCK(CLK_RST_CONTROLLER_RST_DEV_H_CLR) = BIT(CLK_H_KFUSE);
usleep(20); // Wait 20s fo kfuse hw to init.
}
void clock_disable_kfuse()
@ -721,3 +738,44 @@ void clock_sdmmc_disable(u32 id)
_clock_sdmmc_is_reset(id);
_clock_disable_pllc4(BIT(id));
}
u32 clock_get_osc_freq()
{
CLOCK(CLK_RST_CONTROLLER_OSC_FREQ_DET) = OSC_FREQ_DET_TRIG | (2 - 1); // 2 periods of 32.76KHz window.
while (CLOCK(CLK_RST_CONTROLLER_OSC_FREQ_DET_STATUS) & OSC_FREQ_DET_BUSY)
;
u32 cnt = (CLOCK(CLK_RST_CONTROLLER_OSC_FREQ_DET_STATUS) & OSC_FREQ_DET_CNT);
CLOCK(CLK_RST_CONTROLLER_OSC_FREQ_DET) = 0;
// Return frequency in KHz.
for (u32 i = 0; i < ARRAY_SIZE(_clock_osc_cnt); i++)
if (cnt >= _clock_osc_cnt[i].min && cnt <= _clock_osc_cnt[i].max)
return _clock_osc_cnt[i].freq;
return 0;
}
u32 clock_get_dev_freq(clock_pto_id_t id)
{
u32 val = ((id & PTO_SRC_SEL_MASK) << PTO_SRC_SEL_SHIFT) | PTO_DIV_SEL_DIV1 | PTO_CLK_ENABLE | (16 - 1); // 16 periods of 32.76KHz window.
CLOCK(CLK_RST_CONTROLLER_PTO_CLK_CNT_CNTL) = val;
usleep(2);
CLOCK(CLK_RST_CONTROLLER_PTO_CLK_CNT_CNTL) = val | PTO_CNT_RST;
usleep(2);
CLOCK(CLK_RST_CONTROLLER_PTO_CLK_CNT_CNTL) = val;
usleep(2);
CLOCK(CLK_RST_CONTROLLER_PTO_CLK_CNT_CNTL) = val | PTO_CNT_EN;
usleep(502);
while (CLOCK(CLK_RST_CONTROLLER_PTO_CLK_CNT_STATUS) & PTO_CLK_CNT_BUSY)
;
u32 cnt = CLOCK(CLK_RST_CONTROLLER_PTO_CLK_CNT_STATUS) & PTO_CLK_CNT;
CLOCK(CLK_RST_CONTROLLER_PTO_CLK_CNT_CNTL) = 0;
u32 freq = ((cnt << 8) | 0x3E) / 125;
return freq;
}

View file

@ -35,6 +35,10 @@
#define CLK_RST_CONTROLLER_CLK_SYSTEM_RATE 0x30
#define CLK_RST_CONTROLLER_MISC_CLK_ENB 0x48
#define CLK_RST_CONTROLLER_OSC_CTRL 0x50
#define CLK_RST_CONTROLLER_OSC_FREQ_DET 0x58
#define CLK_RST_CONTROLLER_OSC_FREQ_DET_STATUS 0x5C
#define CLK_RST_CONTROLLER_PTO_CLK_CNT_CNTL 0x60
#define CLK_RST_CONTROLLER_PTO_CLK_CNT_STATUS 0x64
#define CLK_RST_CONTROLLER_PLLC_BASE 0x80
#define CLK_RST_CONTROLLER_PLLC_OUT 0x84
#define CLK_RST_CONTROLLER_PLLC_MISC 0x88
@ -156,11 +160,18 @@
#define CLK_RST_CONTROLLER_CLK_SOURCE_UARTAPE 0x710
#define CLK_NO_SOURCE 0x0
#define CLK_NOT_USED 0x0
/*! PLL control and status bits */
#define PLLX_BASE_LOCK BIT(27)
#define PLLX_BASE_REF_DIS BIT(29)
#define PLLX_BASE_ENABLE BIT(30)
#define PLLX_BASE_BYPASS BIT(31)
#define PLLCX_BASE_LOCK BIT(27)
#define PLLCX_BASE_REF_DIS BIT(29)
#define PLLCX_BASE_ENABLE BIT(30)
#define PLLCX_BASE_BYPASS BIT(31)
#define PLLA_OUT0_RSTN_CLR BIT(0)
#define PLLA_OUT0_CLKEN BIT(1)
@ -178,6 +189,140 @@
#define UTMIPLL_LOCK BIT(31)
/*! PTO_CLK_CNT */
#define PTO_REF_CLK_WIN_CFG_MASK 0xF
#define PTO_REF_CLK_WIN_CFG_16P 0xF
#define PTO_CNT_EN BIT(9)
#define PTO_CNT_RST BIT(10)
#define PTO_CLK_ENABLE BIT(13)
#define PTO_SRC_SEL_SHIFT 14
#define PTO_SRC_SEL_MASK 0x1FF
#define PTO_DIV_SEL_MASK (3 << 23)
#define PTO_DIV_SEL_GATED (0 << 23)
#define PTO_DIV_SEL_DIV1 (1 << 23)
#define PTO_DIV_SEL_DIV2_RISING (2 << 23)
#define PTO_DIV_SEL_DIV2_FALLING (3 << 23)
#define PTO_DIV_SEL_CPU_EARLY (0 << 23)
#define PTO_DIV_SEL_CPU_LATE (1 << 23)
#define PTO_CLK_CNT_BUSY BIT(31)
#define PTO_CLK_CNT 0xFFFFFF
/*! OSC_FREQ_DET */
#define OSC_REF_CLK_WIN_CFG_MASK 0xF
#define OSC_FREQ_DET_TRIG BIT(31)
#define OSC_FREQ_DET_BUSY BIT(31)
#define OSC_FREQ_DET_CNT 0xFFFF
/*! PLLs omitted as they need PTO enabled in MISC registers. Norm div is 2. */
typedef enum _clock_pto_id_t
{
CLK_PTO_PCLK_SYS = 0x06,
CLK_PTO_HCLK_SYS = 0x07,
CLK_PTO_UTMIP_240 = 0x0C,
CLK_PTO_CCLK_G = 0x12,
CLK_PTO_CCLK_G_DIV2 = 0x13,
CLK_PTO_SPI1 = 0x17,
CLK_PTO_SPI2 = 0x18,
CLK_PTO_SPI3 = 0x19,
CLK_PTO_SPI4 = 0x1A,
CLK_PTO_MAUD = 0x1B,
CLK_PTO_SCLK = 0x1C,
CLK_PTO_SDMMC1 = 0x20,
CLK_PTO_SDMMC2 = 0x21,
CLK_PTO_SDMMC3 = 0x22,
CLK_PTO_SDMMC4 = 0x23,
CLK_PTO_EMC = 0x24,
CLK_PTO_MSELECT = 0x2F,
CLK_PTO_VIC = 0x36,
CLK_PTO_NVDEC = 0x39,
CLK_PTO_NVENC = 0x3A,
CLK_PTO_NVJPG = 0x3B,
CLK_PTO_TSEC = 0x3C,
CLK_PTO_TSECB = 0x3D,
CLK_PTO_SE = 0x3E,
CLK_PTO_DSIA_LP = 0x62,
CLK_PTO_ISP = 0x64,
CLK_PTO_MC = 0x6A,
CLK_PTO_ACTMON = 0x6B,
CLK_PTO_CSITE = 0x6C,
CLK_PTO_HOST1X = 0x6F,
CLK_PTO_SE_2 = 0x74, // Same as CLK_PTO_SE.
CLK_PTO_SOC_THERM = 0x75,
CLK_PTO_TSEC_2 = 0x77, // Same as CLK_PTO_TSEC.
CLK_PTO_ACLK = 0x7C,
CLK_PTO_QSPI = 0x7D,
CLK_PTO_I2S1 = 0x80,
CLK_PTO_I2S2 = 0x81,
CLK_PTO_I2S3 = 0x82,
CLK_PTO_I2S4 = 0x83,
CLK_PTO_I2S5 = 0x84,
CLK_PTO_AHUB = 0x85,
CLK_PTO_APE = 0x86,
CLK_PTO_DVFS_SOC = 0x88,
CLK_PTO_DVFS_REF = 0x89,
CLK_PTO_SPDIF = 0x8F,
CLK_PTO_SPDIF_IN = 0x90,
CLK_PTO_UART_FST_MIPI_CAL = 0x91,
CLK_PTO_PWM = 0x93,
CLK_PTO_I2C1 = 0x94,
CLK_PTO_I2C2 = 0x95,
CLK_PTO_I2C3 = 0x96,
CLK_PTO_I2C4 = 0x97,
CLK_PTO_I2C5 = 0x98,
CLK_PTO_I2C6 = 0x99,
CLK_PTO_I2C_SLOW = 0x9A,
CLK_PTO_UARTAPE = 0x9B,
CLK_PTO_EXTPERIPH1 = 0x9D,
CLK_PTO_EXTPERIPH2 = 0x9E,
CLK_PTO_ENTROPY = 0xA0,
CLK_PTO_UARTA = 0xA1,
CLK_PTO_UARTB = 0xA2,
CLK_PTO_UARTC = 0xA3,
CLK_PTO_UARTD = 0xA4,
CLK_PTO_OWR = 0xA5,
CLK_PTO_HDA2CODEC_2X = 0xA7,
CLK_PTO_HDA = 0xA8,
CLK_PTO_SDMMC_LEGACY_TM = 0xAB,
CLK_PTO_SOR0 = 0xC0,
CLK_PTO_SOR1 = 0xC1,
CLK_PTO_DISP2 = 0xC4,
CLK_PTO_DISP1 = 0xC5,
CLK_PTO_XUSB_FALCON = 0x110,
CLK_PTO_XUSB_FS = 0x136,
CLK_PTO_XUSB_SS_HOST_DEV = 0x137,
CLK_PTO_XUSB_CORE_HOST = 0x138,
CLK_PTO_XUSB_CORE_DEV = 0x139,
} clock_pto_id_t;
/*
* CLOCK Peripherals:
* L 0 - 31
@ -216,7 +361,7 @@ enum CLK_L_DEV
CLK_L_USBD = 22,
CLK_L_ISP = 23,
CLK_L_3D = 24, // HIDDEN.
//CLK_L_ = 25,
CLK_L_IDE = 25, // RESERVED.
CLK_L_DISP2 = 26,
CLK_L_DISP1 = 27,
CLK_L_HOST1X = 28,
@ -244,11 +389,11 @@ enum CLK_H_DEV
CLK_H_SPI3 = 14,
CLK_H_I2C5 = 15,
CLK_H_DSI = 16,
//CLK_H_ = 17,
CLK_H_TVO = 17, // RESERVED.
CLK_H_HSI = 18, // HIDDEN.
CLK_H_HDMI = 19, // HIDDEN.
CLK_H_CSI = 20,
//CLK_H_ = 21,
CLK_H_TVDAC = 21, // RESERVED.
CLK_H_I2C2 = 22,
CLK_H_UARTC = 23,
CLK_H_MIPI_CAL = 24,
@ -263,14 +408,14 @@ enum CLK_H_DEV
enum CLK_U_DEV
{
//CLK_U_ = 0,
CLK_U_SPEEDO = 0, // RESERVED.
CLK_U_UARTD = 1,
CLK_U_UARTE = 2, // HIDDEN.
CLK_U_I2C3 = 3,
CLK_U_SPI4 = 4,
CLK_U_SDMMC3 = 5,
CLK_U_PCIE = 6,
CLK_U_UNUSED = 7, // RESERVED
CLK_U_OWR = 7, // RESERVED.
CLK_U_AFI = 8,
CLK_U_CSITE = 9,
CLK_U_PCIEXCLK = 10, // Only reset.
@ -444,9 +589,9 @@ enum CLK_Y_DEV
/*! Generic clock descriptor. */
typedef struct _clock_t
{
u32 reset;
u32 enable;
u32 source;
u16 reset;
u16 enable;
u16 source;
u8 index;
u8 clk_src;
u8 clk_div;
@ -494,4 +639,7 @@ int clock_sdmmc_is_not_reset_and_enabled(u32 id);
void clock_sdmmc_enable(u32 id, u32 val);
void clock_sdmmc_disable(u32 id);
u32 clock_get_osc_freq();
u32 clock_get_dev_freq(clock_pto_id_t id);
#endif

View file

@ -2,7 +2,7 @@
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018 shuffle2
* Copyright (c) 2018 balika011
* Copyright (c) 2019 CTCaer
* Copyright (c) 2019-2020 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
@ -76,6 +76,35 @@ u32 fuse_read_odm_keygen_rev()
return 0;
}
u32 fuse_read_dramid(bool raw_id)
{
u32 dramid = (fuse_read_odm(4) & 0xF8) >> 3;
if (raw_id)
return dramid;
if (hw_get_chip_id() == GP_HIDREV_MAJOR_T210)
{
if (dramid > 6)
dramid = 0;
}
else
{
if (dramid > 27)
dramid = 8;
}
return dramid;
}
u32 fuse_read_hw_state()
{
if ((fuse_read_odm(4) & 3) != 3)
return FUSE_NX_HW_STATE_PROD;
else
return FUSE_NX_HW_STATE_DEV;
}
u32 fuse_read_hw_type()
{
if (hw_get_chip_id() == GP_HIDREV_MAJOR_T210B01)
@ -118,6 +147,7 @@ u32 fuse_read(u32 addr)
FUSE(FUSE_ADDR) = addr;
FUSE(FUSE_CTRL) = (FUSE(FUSE_ADDR) & ~FUSE_CMD_MASK) | FUSE_READ;
fuse_wait_idle();
return FUSE(FUSE_RDATA);
}

View file

@ -2,6 +2,7 @@
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018 shuffle2
* Copyright (c) 2018 balika011
* Copyright (c) 2019-2020 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
@ -64,9 +65,10 @@
#define FUSE_OPT_X_COORDINATE 0x214
#define FUSE_OPT_Y_COORDINATE 0x218
#define FUSE_GPU_IDDQ_CALIB 0x228
#define FUSE_RESERVED_ODM28 0x240
#define FUSE_USB_CALIB_EXT 0x350
#define FUSE_RESERVED_ODM28_T210B01 0x240
/*! Fuse commands. */
#define FUSE_READ 0x1
#define FUSE_WRITE 0x2
@ -83,9 +85,17 @@ enum
FUSE_NX_HW_TYPE_HOAG
};
enum
{
FUSE_NX_HW_STATE_PROD,
FUSE_NX_HW_STATE_DEV
};
void fuse_disable_program();
u32 fuse_read_odm(u32 idx);
u32 fuse_read_odm_keygen_rev();
u32 fuse_read_dramid(bool raw_id);
u32 fuse_read_hw_state();
u32 fuse_read_hw_type();
u8 fuse_count_burnt(u32 val);
void fuse_wait_idle();

View file

@ -18,7 +18,7 @@
#include <string.h>
#include <soc/hw_init.h>
#include <gfx/di.h>
#include <display/di.h>
#include <input/joycon.h>
#include <input/touch.h>
#include <sec/se.h>
@ -285,17 +285,21 @@ static void _config_se_brom()
static void _config_regulators(bool tegra_t210)
{
// Set RTC/AO domain to POR voltage.
if (tegra_t210)
max7762x_regulator_set_voltage(REGULATOR_LDO4, 1000000);
// Disable low battery shutdown monitor.
max77620_low_battery_monitor_config(false);
// Disable SDMMC1 IO power.
gpio_write(GPIO_PORT_E, GPIO_PIN_4, GPIO_LOW);
max77620_regulator_enable(REGULATOR_LDO2, 0);
max7762x_regulator_enable(REGULATOR_LDO2, false);
sd_power_cycle_time_start = get_tmr_ms();
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_CNFGBBC, MAX77620_CNFGBBC_RESISTOR_1K);
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG1,
BIT(6) | (3 << MAX77620_ONOFFCNFG1_MRT_SHIFT)); // PWR delay for forced shutdown off.
MAX77620_ONOFFCNFG1_RSVD | (3 << MAX77620_ONOFFCNFG1_MRT_SHIFT)); // PWR delay for forced shutdown off.
if (tegra_t210)
{
@ -313,28 +317,18 @@ static void _config_regulators(bool tegra_t210)
(4 << MAX77620_FPS_TIME_PERIOD_SHIFT) | (2 << MAX77620_FPS_PD_PERIOD_SHIFT)); // 3.x+
// Set vdd_core voltage to 1.125V.
max77620_regulator_set_voltage(REGULATOR_SD0, 1125000);
max7762x_regulator_set_voltage(REGULATOR_SD0, 1125000);
// Fix CPU/GPU after a L4T warmboot.
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_GPIO5, 2);
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_GPIO6, 2);
// Fix CPU/GPU after L4T warmboot.
max77620_config_gpio(5, MAX77620_GPIO_OUTPUT_DISABLE);
max77620_config_gpio(6, MAX77620_GPIO_OUTPUT_DISABLE);
i2c_send_byte(I2C_5, MAX77621_CPU_I2C_ADDR, MAX77621_VOUT_REG, MAX77621_VOUT_0_95V); // Disable power.
i2c_send_byte(I2C_5, MAX77621_CPU_I2C_ADDR, MAX77621_VOUT_DVS_REG, MAX77621_VOUT_ENABLE | MAX77621_VOUT_1_09V); // Enable DVS power.
i2c_send_byte(I2C_5, MAX77621_CPU_I2C_ADDR, MAX77621_CONTROL1_REG, MAX77621_RAMP_50mV_PER_US);
i2c_send_byte(I2C_5, MAX77621_CPU_I2C_ADDR, MAX77621_CONTROL2_REG,
MAX77621_T_JUNCTION_120 | MAX77621_FT_ENABLE | MAX77621_CKKADV_TRIP_75mV_PER_US_HIST_DIS |
MAX77621_CKKADV_TRIP_150mV_PER_US | MAX77621_INDUCTOR_NOMINAL);
i2c_send_byte(I2C_5, MAX77621_GPU_I2C_ADDR, MAX77621_VOUT_REG, MAX77621_VOUT_0_95V); // Disable power.
i2c_send_byte(I2C_5, MAX77621_GPU_I2C_ADDR, MAX77621_VOUT_DVS_REG, MAX77621_VOUT_ENABLE | MAX77621_VOUT_1_09V); // Enable DVS power.
i2c_send_byte(I2C_5, MAX77621_GPU_I2C_ADDR, MAX77621_CONTROL1_REG, MAX77621_RAMP_50mV_PER_US);
i2c_send_byte(I2C_5, MAX77621_GPU_I2C_ADDR, MAX77621_CONTROL2_REG,
MAX77621_T_JUNCTION_120 | MAX77621_FT_ENABLE | MAX77621_CKKADV_TRIP_75mV_PER_US_HIST_DIS |
MAX77621_CKKADV_TRIP_150mV_PER_US | MAX77621_INDUCTOR_NOMINAL);
// Set POR configuration.
max77621_config_default(REGULATOR_CPU0, MAX77621_CTRL_POR_CFG);
max77621_config_default(REGULATOR_GPU0, MAX77621_CTRL_POR_CFG);
}
else // Tegra X1+ set vdd_core voltage to 1.05V.
max77620_regulator_set_voltage(REGULATOR_SD0, 1050000);
max7762x_regulator_set_voltage(REGULATOR_SD0, 1050000);
}
void hw_init()
@ -373,7 +367,8 @@ void hw_init()
#ifdef DEBUG_UART_PORT
clock_enable_uart(DEBUG_UART_PORT);
uart_init(DEBUG_UART_PORT, 115200);
uart_init(DEBUG_UART_PORT, DEBUG_UART_BAUDRATE);
uart_invert(DEBUG_UART_PORT, DEBUG_UART_INVERT, UART_INVERT_TXD);
#endif
// Enable Dynamic Voltage and Frequency Scaling device clock.
@ -391,17 +386,20 @@ void hw_init()
//! TODO: Why? Device is NFC MCU on Lite.
if (nx_hoag)
max77620_regulator_set_volt_and_flags(REGULATOR_LDO8, 2800000, MAX77620_POWER_MODE_NORMAL);
{
max7762x_regulator_set_voltage(REGULATOR_LDO8, 2800000);
max7762x_regulator_enable(REGULATOR_LDO8, true);
}
// Initialize I2C1 for various power related devices.
i2c_init(I2C_1);
// Enable charger in case it's disabled.
bq24193_enable_charger();
// Initialize various regulators based on Erista/Mariko platform.
_config_regulators(tegra_t210);
// Enable charger in case it's disabled.
bq24193_enable_charger();
_config_pmc_scratch(); // Missing from 4.x+
// Set BPMP/SCLK to PLLP_OUT (408MHz).
@ -421,7 +419,7 @@ void hw_init()
bpmp_mmu_enable();
}
void hw_reinit_workaround(bool extra_reconfig, u32 magic)
void hw_reinit_workaround(bool coreboot, u32 magic)
{
// Disable BPMP max clock.
bpmp_clk_rate_set(BPMP_CLK_NORMAL);
@ -431,7 +429,7 @@ void hw_reinit_workaround(bool extra_reconfig, u32 magic)
touch_power_off();
set_fan_duty(0);
jc_deinit();
regulator_disable_5v(REGULATOR_5V_ALL);
regulator_5v_disable(REGULATOR_5V_ALL);
clock_disable_uart(UART_B);
clock_disable_uart(UART_C);
#endif
@ -445,10 +443,10 @@ void hw_reinit_workaround(bool extra_reconfig, u32 magic)
CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_V) |= BIT(CLK_V_AHUB);
CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_Y) |= BIT(CLK_Y_APE);
if (extra_reconfig)
// Do coreboot mitigations.
if (coreboot)
{
msleep(10);
PMC(APBDEV_PMC_PWR_DET_VAL) |= PMC_PWR_DET_SDMMC1_IO_EN;
clock_disable_cl_dvfs();
@ -457,6 +455,9 @@ void hw_reinit_workaround(bool extra_reconfig, u32 magic)
gpio_config(GPIO_PORT_D, GPIO_PIN_1, GPIO_MODE_SPIO);
gpio_config(GPIO_PORT_E, GPIO_PIN_6, GPIO_MODE_SPIO);
gpio_config(GPIO_PORT_H, GPIO_PIN_6, GPIO_MODE_SPIO);
// Reinstate SD controller power.
PMC(APBDEV_PMC_NO_IOPOWER) &= ~(PMC_NO_IOPOWER_SDMMC1_IO_EN);
}
// Power off display.

View file

@ -21,7 +21,7 @@
#include <utils/types.h>
void hw_init();
void hw_reinit_workaround(bool extra_reconfig, u32 magic);
void hw_reinit_workaround(bool coreboot, u32 magic);
u32 hw_get_chip_id();
#endif

View file

@ -136,10 +136,10 @@ static int _i2c_send_single(u32 i2c_idx, u32 dev_addr, u8 *buf, u32 size)
// Initiate transaction on normal mode.
base[I2C_CNFG] = (base[I2C_CNFG] & 0xFFFFF9FF) | NORMAL_MODE_GO;
u32 timeout = get_tmr_ms() + 400; // Actual for max 8 bytes at 100KHz is 0.74ms.
u32 timeout = get_tmr_us() + 200000; // Actual for max 8 bytes at 100KHz is 0.74ms.
while (base[I2C_STATUS] & I2C_STATUS_BUSY)
{
if (get_tmr_ms() > timeout)
if (get_tmr_us() > timeout)
return 0;
}
@ -168,10 +168,10 @@ static int _i2c_recv_single(u32 i2c_idx, u8 *buf, u32 size, u32 dev_addr)
// Initiate transaction on normal mode.
base[I2C_CNFG] = (base[I2C_CNFG] & 0xFFFFF9FF) | NORMAL_MODE_GO;
u32 timeout = get_tmr_ms() + 400; // Actual for max 8 bytes at 100KHz is 0.74ms.
u32 timeout = get_tmr_us() + 200000; // Actual for max 8 bytes at 100KHz is 0.74ms.
while (base[I2C_STATUS] & I2C_STATUS_BUSY)
{
if (get_tmr_ms() > timeout)
if (get_tmr_us() > timeout)
return 0;
}

View file

@ -133,6 +133,10 @@ static irq_status_t _irq_handle_source(u32 irq)
}
}
// Do not re-enable if not handled.
if (status == IRQ_NONE)
return status;
if (irqs[idx].flags & IRQ_FLAG_ONE_OFF)
irq_free(irq);
else
@ -148,7 +152,9 @@ void irq_handler()
if (!irq_init_done)
{
_irq_disable_source(irq);
_irq_ack_source(irq);
return;
}
@ -156,9 +162,10 @@ void irq_handler()
int err = _irq_handle_source(irq);
//TODO: disable if unhandhled.
if (err == IRQ_NONE)
gfx_printf("Unhandled IRQ: %d\n", irq);
{
DPRINTF("Unhandled IRQ got disabled: %d!\n", irq);
}
}
static void _irq_init()
@ -170,6 +177,9 @@ static void _irq_init()
void irq_end()
{
if (!irq_init_done)
return;
_irq_free_all();
irq_disable_cpu_irq_exceptions();
irq_init_done = false;

View file

@ -14,11 +14,69 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <soc/hw_init.h>
#include <soc/pmc.h>
#include <soc/t210.h>
#include <utils/util.h>
int pmc_enable_partition(u32 part, int enable)
void pmc_scratch_lock(pmc_sec_lock_t lock_mask)
{
// Lock Private key disable, Fuse write enable, MC carveout, Warmboot PA id and Warmboot address.
if (lock_mask & PMC_SEC_LOCK_MISC)
{
PMC(APBDEV_PMC_SEC_DISABLE) |= 0x700FF0; // RW lock: 0-3.
PMC(APBDEV_PMC_SEC_DISABLE2) |= 0xFC000000; // RW lock: 21-23.
PMC(APBDEV_PMC_SEC_DISABLE3) |= 0x3F0FFF00; // RW lock: 28-33, 36-38.
PMC(APBDEV_PMC_SEC_DISABLE6) |= 0xC000000; // RW lock: 85.
PMC(APBDEV_PMC_SEC_DISABLE8) |= 0xFF00FF00; // RW lock: 108-111, 116-119.
// SE2 context.
if (hw_get_chip_id() == GP_HIDREV_MAJOR_T210B01)
{
PMC(APBDEV_PMC_SEC_DISABLE9) |= 0x3FF; // RW lock: 120-124. (0xB38)
PMC(APBDEV_PMC_SEC_DISABLE10) = 0xFFFFFFFF; // RW lock: 135-150.
}
}
if (lock_mask & PMC_SEC_LOCK_LP0_PARAMS)
{
PMC(APBDEV_PMC_SEC_DISABLE2) |= 0x3FCFFFF; // RW lock: 8-15, 17-20.
PMC(APBDEV_PMC_SEC_DISABLE4) |= 0x3F3FFFFF; // RW lock: 40-50, 52-54.
PMC(APBDEV_PMC_SEC_DISABLE5) = 0xFFFFFFFF; // RW lock: 56-71.
PMC(APBDEV_PMC_SEC_DISABLE6) |= 0xF3FFC00F; // RW lock: 72-73, 79-84, 86-87.
PMC(APBDEV_PMC_SEC_DISABLE7) |= 0x3FFFFF; // RW lock: 88-98.
PMC(APBDEV_PMC_SEC_DISABLE8) |= 0xFF; // RW lock: 104-107.
}
if (lock_mask & PMC_SEC_LOCK_RST_VECTOR)
PMC(APBDEV_PMC_SEC_DISABLE3) |= 0xF00000; // RW lock: 34-35.
if (lock_mask & PMC_SEC_LOCK_CARVEOUTS)
{
PMC(APBDEV_PMC_SEC_DISABLE2) |= 0x30000; // RW lock: 16.
PMC(APBDEV_PMC_SEC_DISABLE3) |= 0xC0000000; // RW lock: 39.
PMC(APBDEV_PMC_SEC_DISABLE4) |= 0xC0C00000; // RW lock: 51, 55.
PMC(APBDEV_PMC_SEC_DISABLE6) |= 0x3FF0; // RW lock: 74-78.
PMC(APBDEV_PMC_SEC_DISABLE7) |= 0xFFC00000; // RW lock: 99-103.
}
if (lock_mask & PMC_SEC_LOCK_TZ_CMAC_W)
PMC(APBDEV_PMC_SEC_DISABLE8) |= 0x550000; // W lock: 112-115.
if (lock_mask & PMC_SEC_LOCK_TZ_CMAC_R)
PMC(APBDEV_PMC_SEC_DISABLE8) |= 0xAA0000; // R lock: 112-115.
if (lock_mask & PMC_SEC_LOCK_TZ_KEK_W)
PMC(APBDEV_PMC_SEC_DISABLE3) |= 0x55; // W lock: 24-27.
if (lock_mask & PMC_SEC_LOCK_TZ_KEK_R)
PMC(APBDEV_PMC_SEC_DISABLE3) |= 0xAA; // R lock: 24-27.
if (lock_mask & PMC_SEC_LOCK_SE_SRK)
PMC(APBDEV_PMC_SEC_DISABLE) |= 0xFF000; // RW lock: 4-7
}
int pmc_enable_partition(pmc_power_rail_t part, u32 enable)
{
u32 part_mask = BIT(part);
u32 desired_state = enable << part;

View file

@ -91,6 +91,8 @@
#define APBDEV_PMC_SEC_DISABLE6 0x5B8
#define APBDEV_PMC_SEC_DISABLE7 0x5BC
#define APBDEV_PMC_SEC_DISABLE8 0x5C0
#define APBDEV_PMC_SEC_DISABLE9 0x5C4
#define APBDEV_PMC_SEC_DISABLE10 0x5C8
#define APBDEV_PMC_SCRATCH188 0x810
#define APBDEV_PMC_SCRATCH190 0x818
#define APBDEV_PMC_SCRATCH200 0x840
@ -98,6 +100,54 @@
#define APBDEV_PMC_TZRAM_SEC_DISABLE 0xBEC
#define APBDEV_PMC_TZRAM_NON_SEC_DISABLE 0xBF0
int pmc_enable_partition(u32 part, int enable);
typedef enum _pmc_sec_lock_t
{
PMC_SEC_LOCK_MISC = BIT(0),
PMC_SEC_LOCK_LP0_PARAMS = BIT(1),
PMC_SEC_LOCK_RST_VECTOR = BIT(2),
PMC_SEC_LOCK_CARVEOUTS = BIT(3),
PMC_SEC_LOCK_TZ_CMAC_W = BIT(4),
PMC_SEC_LOCK_TZ_CMAC_R = BIT(5),
PMC_SEC_LOCK_TZ_KEK_W = BIT(6),
PMC_SEC_LOCK_TZ_KEK_R = BIT(7),
PMC_SEC_LOCK_SE_SRK = BIT(8),
} pmc_sec_lock_t;
typedef enum _pmc_power_rail_t
{
POWER_RAIL_CRAIL = 0,
POWER_RAIL_3D0 = 1,
POWER_RAIL_VENC = 2,
POWER_RAIL_PCIE = 3,
POWER_RAIL_VDEC = 4,
POWER_RAIL_L2C = 5,
POWER_RAIL_MPE = 6,
POWER_RAIL_HEG = 7,
POWER_RAIL_SATA = 8,
POWER_RAIL_CE1 = 9,
POWER_RAIL_CE2 = 10,
POWER_RAIL_CE3 = 11,
POWER_RAIL_CELP = 12,
POWER_RAIL_3D1 = 13,
POWER_RAIL_CE0 = 14,
POWER_RAIL_C0NC = 15,
POWER_RAIL_C1NC = 16,
POWER_RAIL_SOR = 17,
POWER_RAIL_DIS = 18,
POWER_RAIL_DISB = 19,
POWER_RAIL_XUSBA = 20,
POWER_RAIL_XUSBB = 21,
POWER_RAIL_XUSBC = 22,
POWER_RAIL_VIC = 23,
POWER_RAIL_IRAM = 24,
POWER_RAIL_NVDEC = 25,
POWER_RAIL_NVJPG = 26,
POWER_RAIL_AUD = 27,
POWER_RAIL_DFD = 28,
POWER_RAIL_VE2 = 29
} pmc_power_rail_t;
void pmc_scratch_lock(pmc_sec_lock_t lock_mask);
int pmc_enable_partition(pmc_power_rail_t part, u32 enable);
#endif

View file

@ -142,7 +142,10 @@ c : clear by read
#define R1_SWITCH_ERROR (1 << 7) /* sx, c */
#define R1_EXCEPTION_EVENT (1 << 6) /* sr, a */
#define R1_APP_CMD (1 << 5) /* sr, c */
#define R1_SKIP_STATE_CHECK (1 << 4) /* Custom state to skip expected state check */
#define R1_AKE_SEQ_ERROR (1 << 3)
/* R1_CURRENT_STATE 12:9 */
#define R1_STATE_IDLE 0
#define R1_STATE_READY 1
#define R1_STATE_IDENT 2

View file

@ -34,14 +34,16 @@
#define SD_APP_SEND_SCR 51 /* adtc R1 */
/* OCR bit definitions */
#define SD_OCR_CCS (1 << 30) /* Card Capacity Status */
#define SD_OCR_XPC (1 << 28) /* SDXC power control */
#define SD_OCR_S18R (1 << 24) /* 1.8V switching request */
#define SD_ROCR_S18A SD_OCR_S18R /* 1.8V switching accepted by card */
#define SD_OCR_XPC (1 << 28) /* SDXC power control */
#define SD_OCR_CCS (1 << 30) /* Card Capacity Status */
#define SD_OCR_VDD_27_34 (0x7F << 15) /* VDD voltage 2.7 ~ 3.4 */
#define SD_OCR_VDD_32_33 (1 << 20) /* VDD voltage 3.2 ~ 3.3 */
#define SD_OCR_VDD_18 (1 << 7) /* VDD voltage 1.8 */
#define SD_VHD_27_36 (1 << 8) /* VDD voltage 2.7 ~ 3.6 */
/*
* SD_SWITCH argument format:
*

View file

@ -45,7 +45,7 @@ static inline u32 unstuff_bits(u32 *resp, u32 start, u32 size)
* Common functions for SD and MMC.
*/
static int _sdmmc_storage_check_result(u32 res)
static int _sdmmc_storage_check_card_status(u32 res)
{
//Error mask:
//TODO: R1_SWITCH_ERROR can be skipped for certain card types.
@ -66,15 +66,15 @@ static int _sdmmc_storage_execute_cmd_type1_ex(sdmmc_storage_t *storage, u32 *re
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, cmd, arg, SDMMC_RSP_TYPE_1, check_busy);
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, 0, 0))
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, NULL, NULL))
return 0;
sdmmc_get_rsp(storage->sdmmc, resp, 4, SDMMC_RSP_TYPE_1);
if (mask)
*resp &= ~mask;
if (_sdmmc_storage_check_result(*resp))
if (expected_state == 0x10 || R1_CURRENT_STATE(*resp) == expected_state)
if (_sdmmc_storage_check_card_status(*resp))
if (expected_state == R1_SKIP_STATE_CHECK || R1_CURRENT_STATE(*resp) == expected_state)
return 1;
return 0;
@ -91,34 +91,34 @@ static int _sdmmc_storage_go_idle_state(sdmmc_storage_t *storage)
sdmmc_cmd_t cmd;
sdmmc_init_cmd(&cmd, MMC_GO_IDLE_STATE, 0, SDMMC_RSP_TYPE_0, 0);
return sdmmc_execute_cmd(storage->sdmmc, &cmd, 0, 0);
return sdmmc_execute_cmd(storage->sdmmc, &cmd, NULL, NULL);
}
static int _sdmmc_storage_get_cid(sdmmc_storage_t *storage, void *buf)
{
sdmmc_cmd_t cmd;
sdmmc_init_cmd(&cmd, MMC_ALL_SEND_CID, 0, SDMMC_RSP_TYPE_2, 0);
if (!sdmmc_execute_cmd(storage->sdmmc, &cmd, 0, 0))
if (!sdmmc_execute_cmd(storage->sdmmc, &cmd, NULL, NULL))
return 0;
sdmmc_get_rsp(storage->sdmmc, buf, 0x10, SDMMC_RSP_TYPE_2);
sdmmc_get_rsp(storage->sdmmc, buf, 16, SDMMC_RSP_TYPE_2);
return 1;
}
static int _sdmmc_storage_select_card(sdmmc_storage_t *storage)
{
return _sdmmc_storage_execute_cmd_type1(storage, MMC_SELECT_CARD, storage->rca << 16, 1, 0x10);
return _sdmmc_storage_execute_cmd_type1(storage, MMC_SELECT_CARD, storage->rca << 16, 1, R1_SKIP_STATE_CHECK);
}
static int _sdmmc_storage_get_csd(sdmmc_storage_t *storage, void *buf)
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, MMC_SEND_CSD, storage->rca << 16, SDMMC_RSP_TYPE_2, 0);
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, 0, 0))
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, NULL, NULL))
return 0;
sdmmc_get_rsp(storage->sdmmc, buf, 0x10, SDMMC_RSP_TYPE_2);
sdmmc_get_rsp(storage->sdmmc, buf, 16, SDMMC_RSP_TYPE_2);
return 1;
}
@ -306,7 +306,7 @@ static int _mmc_storage_get_op_cond_inner(sdmmc_storage_t *storage, u32 *pout, u
}
sdmmc_init_cmd(&cmd, MMC_SEND_OP_COND, arg, SDMMC_RSP_TYPE_3, 0);
if (!sdmmc_execute_cmd(storage->sdmmc, &cmd, 0, 0))
if (!sdmmc_execute_cmd(storage->sdmmc, &cmd, NULL, NULL))
return 0;
return sdmmc_get_rsp(storage->sdmmc, pout, 4, SDMMC_RSP_TYPE_3);
@ -340,7 +340,7 @@ static int _mmc_storage_get_op_cond(sdmmc_storage_t *storage, u32 power)
static int _mmc_storage_set_relative_addr(sdmmc_storage_t *storage)
{
return _sdmmc_storage_execute_cmd_type1(storage, MMC_SET_RELATIVE_ADDR, storage->rca << 16, 0, 0x10);
return _sdmmc_storage_execute_cmd_type1(storage, MMC_SET_RELATIVE_ADDR, storage->rca << 16, 0, R1_SKIP_STATE_CHECK);
}
static void _mmc_storage_parse_cid(sdmmc_storage_t *storage)
@ -432,19 +432,19 @@ static int _mmc_storage_get_ext_csd(sdmmc_storage_t *storage, void *buf)
reqbuf.is_multi_block = 0;
reqbuf.is_auto_cmd12 = 0;
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, 0))
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, NULL))
return 0;
u32 tmp = 0;
sdmmc_get_rsp(storage->sdmmc, &tmp, 4, SDMMC_RSP_TYPE_1);
_mmc_storage_parse_ext_csd(storage, buf);
return _sdmmc_storage_check_result(tmp);
return _sdmmc_storage_check_card_status(tmp);
}
static int _mmc_storage_switch(sdmmc_storage_t *storage, u32 arg)
{
return _sdmmc_storage_execute_cmd_type1(storage, MMC_SWITCH, arg, 1, 0x10);
return _sdmmc_storage_execute_cmd_type1(storage, MMC_SWITCH, arg, 1, R1_SKIP_STATE_CHECK);
}
static int _mmc_storage_switch_buswidth(sdmmc_storage_t *storage, u32 bus_width)
@ -688,53 +688,60 @@ static int _sd_storage_execute_app_cmd_type1(sdmmc_storage_t *storage, u32 *resp
static int _sd_storage_send_if_cond(sdmmc_storage_t *storage)
{
sdmmc_cmd_t cmdbuf;
sdmmc_init_cmd(&cmdbuf, SD_SEND_IF_COND, 0x1AA, SDMMC_RSP_TYPE_5, 0);
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, 0, 0))
u16 vhd_pattern = SD_VHD_27_36 | 0xAA;
sdmmc_init_cmd(&cmdbuf, SD_SEND_IF_COND, vhd_pattern, SDMMC_RSP_TYPE_5, 0);
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, NULL, NULL))
return 1; // The SD Card is version 1.X
// Card version is >= 2.0, parse results.
u32 resp = 0;
if (!sdmmc_get_rsp(storage->sdmmc, &resp, 4, SDMMC_RSP_TYPE_5))
return 2;
return 2; // Failed.
return (resp & 0xFF) == 0xAA ? 0 : 2;
// Check if VHD was accepted and pattern was properly returned.
if ((resp & 0xFFF) == vhd_pattern)
return 0;
// Failed.
return 2;
}
static int _sd_storage_get_op_cond_once(sdmmc_storage_t *storage, u32 *cond, int is_version_1, int bus_low_voltage_support)
static int _sd_storage_get_op_cond_once(sdmmc_storage_t *storage, u32 *cond, int is_version_1, int bus_uhs_support)
{
sdmmc_cmd_t cmdbuf;
// Support for Current > 150mA
u32 arg = (~is_version_1 & 1) ? SD_OCR_XPC : 0;
u32 arg = !is_version_1 ? SD_OCR_XPC : 0;
// Support for handling block-addressed SDHC cards
arg |= (~is_version_1 & 1) ? SD_OCR_CCS : 0;
arg |= !is_version_1 ? SD_OCR_CCS : 0;
// Support for 1.8V
arg |= (bus_low_voltage_support & ~is_version_1 & 1) ? SD_OCR_S18R : 0;
arg |= (bus_uhs_support && !is_version_1) ? SD_OCR_S18R : 0;
// This is needed for most cards. Do not set bit7 even if 1.8V is supported.
arg |= SD_OCR_VDD_32_33;
sdmmc_init_cmd(&cmdbuf, SD_APP_OP_COND, arg, SDMMC_RSP_TYPE_3, 0);
if (!_sd_storage_execute_app_cmd(storage, 0x10, is_version_1 ? 0x400000 : 0, &cmdbuf, 0, 0))
if (!_sd_storage_execute_app_cmd(storage, R1_SKIP_STATE_CHECK, is_version_1 ? R1_ILLEGAL_COMMAND : 0, &cmdbuf, NULL, NULL))
return 0;
return sdmmc_get_rsp(storage->sdmmc, cond, 4, SDMMC_RSP_TYPE_3);
}
static int _sd_storage_get_op_cond(sdmmc_storage_t *storage, int is_version_1, int bus_low_voltage_support)
static int _sd_storage_get_op_cond(sdmmc_storage_t *storage, int is_version_1, int bus_uhs_support)
{
u32 timeout = get_tmr_ms() + 1500;
while (1)
{
u32 cond = 0;
if (!_sd_storage_get_op_cond_once(storage, &cond, is_version_1, bus_low_voltage_support))
if (!_sd_storage_get_op_cond_once(storage, &cond, is_version_1, bus_uhs_support))
break;
if (cond & MMC_CARD_BUSY)
{
DPRINTF("[SD] cond: %08X, lv: %d\n", cond, bus_low_voltage_support);
DPRINTF("[SD] op cond: %08X, lv: %d\n", cond, bus_uhs_support);
if (cond & SD_OCR_CCS)
storage->has_sector_access = 1;
// Check if card supports 1.8V signaling.
if (cond & SD_ROCR_S18A && bus_low_voltage_support)
if (cond & SD_ROCR_S18A && bus_uhs_support)
{
//The low voltage regulator configuration is valid for SDMMC1 only.
if (storage->sdmmc->id == SDMMC_1 &&
@ -771,7 +778,7 @@ static int _sd_storage_get_rca(sdmmc_storage_t *storage)
while (1)
{
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, 0, 0))
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, NULL, NULL))
break;
u32 resp = 0;
@ -822,7 +829,7 @@ int _sd_storage_get_scr(sdmmc_storage_t *storage, u8 *buf)
reqbuf.is_multi_block = 0;
reqbuf.is_auto_cmd12 = 0;
if (!_sd_storage_execute_app_cmd(storage, R1_STATE_TRAN, 0, &cmdbuf, &reqbuf, 0))
if (!_sd_storage_execute_app_cmd(storage, R1_STATE_TRAN, 0, &cmdbuf, &reqbuf, NULL))
return 0;
u32 tmp = 0;
@ -838,7 +845,7 @@ int _sd_storage_get_scr(sdmmc_storage_t *storage, u8 *buf)
_sd_storage_parse_scr(storage);
//gfx_hexdump(0, storage->raw_scr, 8);
return _sdmmc_storage_check_result(tmp);
return _sdmmc_storage_check_card_status(tmp);
}
int _sd_storage_switch_get(sdmmc_storage_t *storage, void *buf)
@ -854,12 +861,12 @@ int _sd_storage_switch_get(sdmmc_storage_t *storage, void *buf)
reqbuf.is_multi_block = 0;
reqbuf.is_auto_cmd12 = 0;
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, 0))
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, NULL))
return 0;
u32 tmp = 0;
sdmmc_get_rsp(storage->sdmmc, &tmp, 4, SDMMC_RSP_TYPE_1);
return _sdmmc_storage_check_result(tmp);
return _sdmmc_storage_check_card_status(tmp);
}
int _sd_storage_switch(sdmmc_storage_t *storage, void *buf, int mode, int group, u32 arg)
@ -878,12 +885,12 @@ int _sd_storage_switch(sdmmc_storage_t *storage, void *buf, int mode, int group,
reqbuf.is_multi_block = 0;
reqbuf.is_auto_cmd12 = 0;
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, 0))
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, NULL))
return 0;
u32 tmp = 0;
sdmmc_get_rsp(storage->sdmmc, &tmp, 4, SDMMC_RSP_TYPE_1);
return _sdmmc_storage_check_result(tmp);
return _sdmmc_storage_check_card_status(tmp);
}
void _sd_storage_set_current_limit(sdmmc_storage_t *storage, u16 current_limit, u8 *buf)
@ -1057,6 +1064,44 @@ int _sd_storage_enable_hs_high_volt(sdmmc_storage_t *storage, u8 *buf)
return sdmmc_setup_clock(storage->sdmmc, SDHCI_TIMING_SD_HS25);
}
u32 sd_storage_ssr_get_au(sdmmc_storage_t *storage)
{
u32 au_size = storage->ssr.uhs_au_size;
if (!au_size)
au_size = storage->ssr.au_size;
if (au_size <= 10)
{
u32 shift = au_size;
au_size = shift ? 8 : 0;
au_size <<= shift;
}
else
{
switch (au_size)
{
case 11:
au_size = 12288;
break;
case 12:
au_size = 16384;
break;
case 13:
au_size = 24576;
break;
case 14:
au_size = 32768;
break;
case 15:
au_size = 65536;
break;
}
}
return au_size;
}
static void _sd_storage_parse_ssr(sdmmc_storage_t *storage)
{
// unstuff_bits supports only 4 u32 so break into 2 x 16byte groups
@ -1106,6 +1151,9 @@ static void _sd_storage_parse_ssr(sdmmc_storage_t *storage)
storage->ssr.video_class = unstuff_bits(raw_ssr1, 384 - 384, 8);
storage->ssr.app_class = unstuff_bits(raw_ssr2, 336 - 256, 4);
storage->ssr.au_size = unstuff_bits(raw_ssr1, 428 - 384, 4);
storage->ssr.uhs_au_size = unstuff_bits(raw_ssr1, 392 - 384, 4);
}
static int _sd_storage_get_ssr(sdmmc_storage_t *storage, u8 *buf)
@ -1127,7 +1175,7 @@ DPRINTF("[SD] ssr: Card lacks mandatory SD Status function\n");
return 0;
}
if (!_sd_storage_execute_app_cmd(storage, R1_STATE_TRAN, 0, &cmdbuf, &reqbuf, 0))
if (!_sd_storage_execute_app_cmd(storage, R1_STATE_TRAN, 0, &cmdbuf, &reqbuf, NULL))
return 0;
u32 tmp = 0;
@ -1143,7 +1191,7 @@ DPRINTF("[SD] ssr: Card lacks mandatory SD Status function\n");
_sd_storage_parse_ssr(storage);
//gfx_hexdump(0, storage->raw_ssr, 64);
return _sdmmc_storage_check_result(tmp);
return _sdmmc_storage_check_card_status(tmp);
}
static void _sd_storage_parse_cid(sdmmc_storage_t *storage)
@ -1186,7 +1234,7 @@ static void _sd_storage_parse_csd(sdmmc_storage_t *storage)
}
}
static bool _sdmmc_storage_get_low_voltage_support(u32 bus_width, u32 type)
static bool _sdmmc_storage_get_bus_uhs_support(u32 bus_width, u32 type)
{
switch (type)
{
@ -1235,13 +1283,13 @@ DPRINTF("[SD] after init\n");
DPRINTF("[SD] went to idle state\n");
is_version_1 = _sd_storage_send_if_cond(storage);
if (is_version_1 == 2)
if (is_version_1 == 2) // Failed.
return 0;
DPRINTF("[SD] after send if cond\n");
bool bus_low_voltage_support = _sdmmc_storage_get_low_voltage_support(bus_width, type);
bool bus_uhs_support = _sdmmc_storage_get_bus_uhs_support(bus_width, type);
if (!_sd_storage_get_op_cond(storage, is_version_1, bus_low_voltage_support))
if (!_sd_storage_get_op_cond(storage, is_version_1, bus_uhs_support))
return 0;
DPRINTF("[SD] got op cond\n");
@ -1310,6 +1358,7 @@ DPRINTF("[SD] switched to wide bus width\n");
}
else
{
bus_width = SDMMC_BUS_WIDTH_1;
DPRINTF("[SD] SD does not support wide bus width\n");
}
@ -1321,7 +1370,7 @@ DPRINTF("[SD] enabled UHS\n");
sdmmc_card_clock_powersave(sdmmc, SDMMC_POWER_SAVE_ENABLE);
}
else if (type != SDHCI_TIMING_SD_DS12 && (storage->scr.sda_vsn & 0xF) != 0)
else if (type != SDHCI_TIMING_SD_DS12 && (storage->scr.sda_vsn & 0xF)) // Not default speed and not SD Version 1.x
{
if (!_sd_storage_enable_hs_high_volt(storage, buf))
return 0;
@ -1368,7 +1417,7 @@ int _gc_storage_custom_cmd(sdmmc_storage_t *storage, void *buf)
reqbuf.is_multi_block = 0;
reqbuf.is_auto_cmd12 = 0;
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, 0))
if (!sdmmc_execute_cmd(storage->sdmmc, &cmdbuf, &reqbuf, NULL))
{
sdmmc_stop_transmission(storage->sdmmc, &resp);
return 0;
@ -1376,7 +1425,7 @@ int _gc_storage_custom_cmd(sdmmc_storage_t *storage, void *buf)
if (!sdmmc_get_rsp(storage->sdmmc, &resp, 4, SDMMC_RSP_TYPE_1))
return 0;
if (!_sdmmc_storage_check_result(resp))
if (!_sdmmc_storage_check_card_status(resp))
return 0;
return _sdmmc_storage_check_status(storage);
}

View file

@ -95,6 +95,8 @@ typedef struct _sd_ssr
u8 uhs_grade;
u8 video_class;
u8 app_class;
u8 au_size;
u8 uhs_au_size;
u32 protected_size;
} sd_ssr_t;
@ -107,6 +109,7 @@ typedef struct _sdmmc_storage_t
u32 sec_cnt;
int is_low_voltage;
u32 partition;
int initialized;
u8 raw_cid[0x10];
u8 raw_csd[0x10];
u8 raw_scr[8];
@ -116,16 +119,17 @@ typedef struct _sdmmc_storage_t
mmc_ext_csd_t ext_csd;
sd_scr_t scr;
sd_ssr_t ssr;
int initialized;
} sdmmc_storage_t;
int sdmmc_storage_end(sdmmc_storage_t *storage);
int sdmmc_storage_read(sdmmc_storage_t *storage, u32 sector, u32 num_sectors, void *buf);
int sdmmc_storage_write(sdmmc_storage_t *storage, u32 sector, u32 num_sectors, void *buf);
int sdmmc_storage_init_mmc(sdmmc_storage_t *storage, sdmmc_t *sdmmc, u32 bus_width, u32 type);
int sdmmc_storage_set_mmc_partition(sdmmc_storage_t *storage, u32 partition);
int sdmmc_storage_end(sdmmc_storage_t *storage);
int sdmmc_storage_read(sdmmc_storage_t *storage, u32 sector, u32 num_sectors, void *buf);
int sdmmc_storage_write(sdmmc_storage_t *storage, u32 sector, u32 num_sectors, void *buf);
int sdmmc_storage_init_mmc(sdmmc_storage_t *storage, sdmmc_t *sdmmc, u32 bus_width, u32 type);
int sdmmc_storage_set_mmc_partition(sdmmc_storage_t *storage, u32 partition);
void sdmmc_storage_init_wait_sd();
int sdmmc_storage_init_sd(sdmmc_storage_t *storage, sdmmc_t *sdmmc, u32 bus_width, u32 type);
int sdmmc_storage_init_gc(sdmmc_storage_t *storage, sdmmc_t *sdmmc);
int sdmmc_storage_init_sd(sdmmc_storage_t *storage, sdmmc_t *sdmmc, u32 bus_width, u32 type);
int sdmmc_storage_init_gc(sdmmc_storage_t *storage, sdmmc_t *sdmmc);
u32 sd_storage_ssr_get_au(sdmmc_storage_t *storage);
#endif

View file

@ -501,7 +501,7 @@ int sdmmc_get_rsp(sdmmc_t *sdmmc, u32 *rsp, u32 size, u32 type)
break;
case SDMMC_RSP_TYPE_2:
if (size < 0x10)
if (size < 16)
return 0;
rsp[0] = sdmmc->rsp[0];
rsp[1] = sdmmc->rsp[1];
@ -1052,7 +1052,7 @@ DPRINTF("rsp(%d): %08X, %08X, %08X, %08X\n", result,
if (!result)
{
#ifdef ERROR_EXTRA_PRINTING
EPRINTFARGS("SDMMC: DMA Update failed (%08X)!", result);
EPRINTF("SDMMC: DMA Update failed!");
#endif
}
}
@ -1200,8 +1200,8 @@ static int _sdmmc_config_sdmmc1(bool t210b01)
usleep(10000);
// Enable SD card IO power.
max77620_regulator_set_voltage(REGULATOR_LDO2, 3300000);
max77620_regulator_enable(REGULATOR_LDO2, 1);
max7762x_regulator_set_voltage(REGULATOR_LDO2, 3300000);
max7762x_regulator_enable(REGULATOR_LDO2, true);
usleep(1000);
// Set pad slew codes to get good quality clock.
@ -1332,18 +1332,6 @@ int sdmmc_init(sdmmc_t *sdmmc, u32 id, u32 power, u32 bus_width, u32 type, int p
void sdmmc1_disable_power()
{
// Ensure regulator is into default voltage.
if (PMC(APBDEV_PMC_PWR_DET_VAL) & PMC_PWR_DET_SDMMC1_IO_EN)
{
// Switch to 1.8V and wait for regulator to stabilize.
max77620_regulator_set_voltage(REGULATOR_LDO2, 1800000);
usleep(150);
// Inform IO pads that we switched to 1.8V.
PMC(APBDEV_PMC_PWR_DET_VAL) &= ~(PMC_PWR_DET_SDMMC1_IO_EN);
(void)PMC(APBDEV_PMC_PWR_DET_VAL); // Commit write.
}
// T210B01 WAR: Clear pull down from CLK pad.
PINMUX_AUX(PINMUX_AUX_SDMMC1_CLK) &= ~PINMUX_PULL_MASK;
@ -1351,7 +1339,7 @@ void sdmmc1_disable_power()
_sdmmc_config_sdmmc1_pads(true);
// Disable SD card IO power regulator.
max77620_regulator_enable(REGULATOR_LDO2, 0);
max7762x_regulator_enable(REGULATOR_LDO2, false);
usleep(4000);
// Disable SD card IO power pin.
@ -1440,7 +1428,7 @@ int sdmmc_enable_low_voltage(sdmmc_t *sdmmc)
_sdmmc_commit_changes(sdmmc);
// Switch to 1.8V and wait for regulator to stabilize. Assume max possible wait needed.
max77620_regulator_set_voltage(REGULATOR_LDO2, 1800000);
max7762x_regulator_set_voltage(REGULATOR_LDO2, 1800000);
usleep(150);
// Inform IO pads that we switched to 1.8V.

View file

@ -56,7 +56,7 @@ void set_fan_duty(u32 duty)
if (inv_duty == 236)
{
PWM(PWM_CONTROLLER_PWM_CSR_1) = PWM_CSR_EN | (0x100 << 16); // Bit 24 is absolute 0%.
regulator_disable_5v(REGULATOR_5V_FAN);
regulator_5v_disable(REGULATOR_5V_FAN);
// Disable fan.
PINMUX_AUX(PINMUX_AUX_LCD_GPIO2) =
@ -65,7 +65,7 @@ void set_fan_duty(u32 duty)
else // Set PWM duty.
{
// Fan power supply.
regulator_enable_5v(REGULATOR_5V_FAN);
regulator_5v_enable(REGULATOR_5V_FAN);
PWM(PWM_CONTROLLER_PWM_CSR_1) = PWM_CSR_EN | (inv_duty << 16);
// Enable fan.

View file

@ -309,7 +309,7 @@ static bool _fts_touch_read(touchpad_report_t *rpt)
static u8 _hid_transfer_start(usb_ctxt_t *usbs, u32 len)
{
u8 status = usb_ops.usb_device_ep1_in_write((u8 *)USB_EP_BULK_IN_BUF_ADDR, len, NULL, USB_XFER_SYNCED);
u8 status = usb_ops.usb_device_ep1_in_write((u8 *)USB_EP_BULK_IN_BUF_ADDR, len, NULL, USB_XFER_SYNCED_CMD);
if (status == USB_ERROR_XFER_ERROR)
{
usbs->set_text(usbs->label, "#FFDD00 Error:# EP IN transfer!");

View file

@ -58,7 +58,7 @@
#define UMS_SCSI_TRANSFER_512K (0x80000 >> UMS_DISK_LBA_SHIFT)
#define UMS_EP_OUT_MAX_XFER (USB_EP_BULK_OUT_MAX_XFER >> UMS_DISK_LBA_SHIFT)
#define UMS_EP_OUT_MAX_XFER (USB_EP_BULK_OUT_MAX_XFER)
// Length of a SCSI Command Data Block.
#define SCSI_MAX_CMD_SZ 16
@ -121,6 +121,15 @@ enum ums_state {
UMS_STATE_TERMINATED
};
enum ums_result {
UMS_RES_OK = 0,
UMS_RES_IO_ERROR = -5,
UMS_RES_TIMEOUT = -3,
UMS_RES_PROT_FATAL = -4,
UMS_RES_INVALID_ARG = -22
};
enum data_direction {
DATA_DIR_UNKNOWN = 0,
DATA_DIR_FROM_HOST,
@ -283,21 +292,21 @@ static int ums_wedge_bulk_in_endpoint(usbd_gadget_ums_t *ums)
{
/* usbd_set_ep_wedge(bulk_ctxt->bulk_in); */
return 0;
return UMS_RES_OK;
}
static int ums_set_stall(u32 ep)
{
usb_ops.usbd_set_ep_stall(ep, USB_EP_CFG_STALL);
return 0;
return UMS_RES_OK;
}
static int ums_clear_stall(u32 ep)
{
usb_ops.usbd_set_ep_stall(ep, USB_EP_CFG_CLEAR);
return 0;
return UMS_RES_OK;
}
static void ums_flush_endpoint(u32 ep)
@ -306,13 +315,13 @@ static void ums_flush_endpoint(u32 ep)
usb_ops.usbd_flush_endpoint(ep);
}
static void _ums_transfer_start(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt, u32 ep, bool sync)
static void _ums_transfer_start(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt, u32 ep, u32 sync_timeout)
{
if (ep == bulk_ctxt->bulk_in)
{
bulk_ctxt->bulk_in_status = usb_ops.usb_device_ep1_in_write(
bulk_ctxt->bulk_in_buf, bulk_ctxt->bulk_in_length,
&bulk_ctxt->bulk_in_length_actual, sync);
&bulk_ctxt->bulk_in_length_actual, sync_timeout);
if (bulk_ctxt->bulk_in_status == USB_ERROR_XFER_ERROR)
{
@ -322,14 +331,14 @@ static void _ums_transfer_start(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt,
else if (bulk_ctxt->bulk_in_status == USB2_ERROR_XFER_NOT_ALIGNED)
ums->set_text(ums->label, "#FFDD00 Error:# EP IN Buffer not aligned!");
if (sync)
if (sync_timeout)
bulk_ctxt->bulk_in_buf_state = BUF_STATE_EMPTY;
}
else
{
bulk_ctxt->bulk_out_status = usb_ops.usb_device_ep1_out_read(
bulk_ctxt->bulk_out_buf, bulk_ctxt->bulk_out_length,
&bulk_ctxt->bulk_out_length_actual, sync);
&bulk_ctxt->bulk_out_length_actual, sync_timeout);
if (bulk_ctxt->bulk_out_status == USB_ERROR_XFER_ERROR)
{
@ -339,7 +348,7 @@ static void _ums_transfer_start(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt,
else if (bulk_ctxt->bulk_out_status == USB2_ERROR_XFER_NOT_ALIGNED)
ums->set_text(ums->label, "#FFDD00 Error:# EP OUT Buffer not aligned!");
if (sync)
if (sync_timeout)
bulk_ctxt->bulk_out_buf_state = BUF_STATE_FULL;
}
}
@ -377,7 +386,7 @@ static void _ums_transfer_finish(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt,
else
{
bulk_ctxt->bulk_out_status = usb_ops.usb_device_ep1_out_reading_finish(
&bulk_ctxt->bulk_out_length_actual, 1000000);
&bulk_ctxt->bulk_out_length_actual);
if (bulk_ctxt->bulk_out_status == USB_ERROR_XFER_ERROR)
{
@ -446,20 +455,20 @@ static int _scsi_read(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
ums->lun.sense_data = SS_INVALID_FIELD_IN_CDB;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
}
if (lba_offset >= ums->lun.num_sectors)
{
ums->lun.sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
// Check that request data size is not 0.
u32 amount_left = ums->data_size_from_cmnd >> UMS_DISK_LBA_SHIFT;
if (!amount_left)
return -5; // I/O error. /* No default reply */
return UMS_RES_IO_ERROR; // No default reply.
// Limit IO transfers based on request for faster concurrent reads.
u32 max_io_transfer = (amount_left >= UMS_SCSI_TRANSFER_512K) ?
@ -520,7 +529,7 @@ static int _scsi_read(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
sdmmc_buf += amount << UMS_DISK_LBA_SHIFT;
}
return -5; // I/O error no default reply here. /* No default reply */
return UMS_RES_IO_ERROR; // No default reply.
}
/*
@ -541,7 +550,7 @@ static int _scsi_write(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
ums->lun.sense_data = SS_WRITE_PROTECTED;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
if (ums->cmnd[0] == SC_WRITE_6)
@ -555,7 +564,7 @@ static int _scsi_write(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
ums->lun.sense_data = SS_INVALID_FIELD_IN_CDB;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
}
@ -564,7 +573,7 @@ static int _scsi_write(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
ums->lun.sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
/* Carry out the file writes */
@ -580,7 +589,7 @@ static int _scsi_write(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
// Limit write to max supported read from EP OUT.
amount = MIN(amount_left_to_req, UMS_EP_OUT_MAX_XFER << UMS_DISK_LBA_SHIFT);
amount = MIN(amount_left_to_req, UMS_EP_OUT_MAX_XFER);
if (usb_lba_offset >= ums->lun.num_sectors) //////////Check if it works with concurrency
{
@ -612,7 +621,7 @@ static int _scsi_write(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
ums->lun.sense_data = SS_COMMUNICATION_FAILURE;
ums->lun.sense_data_info = lba_offset;
ums->lun.info_valid = 1;
sprintf(txt_buf, "#FFDD00 Error:# Write - Comm failure %d!", bulk_ctxt->bulk_out_status);
s_printf(txt_buf, "#FFDD00 Error:# Write - Comm failure %d!", bulk_ctxt->bulk_out_status);
ums->set_text(ums->label, txt_buf);
break;
}
@ -668,7 +677,7 @@ DPRINTF("file write %X @ %X\n", amount, lba_offset);
}
}
return -5; // I/O error. /* No default reply */
return UMS_RES_IO_ERROR; // No default reply.
}
static int _scsi_verify(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
@ -679,7 +688,7 @@ static int _scsi_verify(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
ums->lun.sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
// We allow DPO but we don't implement it. Check that nothing else is enabled.
@ -687,12 +696,12 @@ static int _scsi_verify(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
ums->lun.sense_data = SS_INVALID_FIELD_IN_CDB;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
u32 verification_length = get_array_be_to_le16(&ums->cmnd[7]);
if (verification_length == 0)
return -5; // I/O error. /* No default reply */
return UMS_RES_IO_ERROR; // No default reply.
u32 amount;
while (verification_length > 0)
@ -724,7 +733,7 @@ DPRINTF("File read %X @ %X\n", amount, lba_offset);
lba_offset += amount;
verification_length -= amount;
}
return 0;
return UMS_RES_OK;
}
static int _scsi_inquiry(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
@ -742,7 +751,7 @@ static int _scsi_inquiry(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
buf[3] = 20; // Additional length.
buf += 4;
sprintf((char *)buf, "%04X%s",
s_printf((char *)buf, "%04X%s",
ums->lun.storage->cid.serial, ums->lun.type == MMC_SD ? " SD " : " eMMC ");
switch (ums->lun.partition)
@ -751,13 +760,13 @@ static int _scsi_inquiry(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
strcpy((char *)buf + strlen((char *)buf), "RAW");
break;
case EMMC_GPP + 1:
sprintf((char *)buf + strlen((char *)buf), "GPP");
s_printf((char *)buf + strlen((char *)buf), "GPP");
break;
case EMMC_BOOT0 + 1:
sprintf((char *)buf + strlen((char *)buf), "BOOT0");
s_printf((char *)buf + strlen((char *)buf), "BOOT0");
break;
case EMMC_BOOT1 + 1:
sprintf((char *)buf + strlen((char *)buf), "BOOT1");
s_printf((char *)buf + strlen((char *)buf), "BOOT1");
break;
}
@ -784,18 +793,18 @@ static int _scsi_inquiry(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
switch (ums->lun.partition)
{
case 0:
sprintf((char *)buf, "%s", "SD RAW");
s_printf((char *)buf, "%s", "SD RAW");
break;
case EMMC_GPP + 1:
sprintf((char *)buf, "%s%s",
s_printf((char *)buf, "%s%s",
ums->lun.type == MMC_SD ? "SD " : "eMMC ", "GPP");
break;
case EMMC_BOOT0 + 1:
sprintf((char *)buf, "%s%s",
s_printf((char *)buf, "%s%s",
ums->lun.type == MMC_SD ? "SD " : "eMMC ", "BOOT0");
break;
case EMMC_BOOT1 + 1:
sprintf((char *)buf, "%s%s",
s_printf((char *)buf, "%s%s",
ums->lun.type == MMC_SD ? "SD " : "eMMC ", "BOOT1");
break;
}
@ -843,7 +852,7 @@ static int _scsi_read_capacity(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
ums->lun.sense_data = SS_INVALID_FIELD_IN_CDB;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
put_array_le_to_be32(ums->lun.num_sectors - 1, &buf[0]); // Max logical block.
@ -866,14 +875,14 @@ static int _scsi_log_sense(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
ums->lun.sense_data = SS_SAVING_PARAMETERS_NOT_SUPPORTED;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
if (pc != 1) // Current cumulative values.
{
ums->lun.sense_data = SS_INVALID_FIELD_IN_CDB;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
memset(buf, 0, 8);
@ -915,7 +924,7 @@ static int _scsi_log_sense(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
ums->lun.sense_data = SS_INVALID_FIELD_IN_CDB;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
put_array_le_to_be16(len - 4, &buf0[2]);
@ -938,14 +947,14 @@ static int _scsi_mode_sense(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
ums->lun.sense_data = SS_INVALID_FIELD_IN_CDB;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
if (pc == 3)
{
ums->lun.sense_data = SS_SAVING_PARAMETERS_NOT_SUPPORTED;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
/* Write the mode parameter header. Fixed values are: default
@ -995,7 +1004,7 @@ static int _scsi_mode_sense(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
ums->lun.sense_data = SS_INVALID_FIELD_IN_CDB;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
/* Store the mode data length */
@ -1015,14 +1024,14 @@ static int _scsi_start_stop(usbd_gadget_ums_t *ums)
{
ums->lun.sense_data = SS_INVALID_COMMAND;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
else if ((ums->cmnd[1] & ~0x01) != 0 || // Mask away Immed.
(ums->cmnd[4] & ~0x03) != 0) // Mask LoEj, Start.
{
ums->lun.sense_data = SS_INVALID_FIELD_IN_CDB;
return -22;
return UMS_RES_INVALID_ARG;
}
loej = ums->cmnd[4] & 0x02;
@ -1035,10 +1044,10 @@ static int _scsi_start_stop(usbd_gadget_ums_t *ums)
{
ums->lun.sense_data = SS_MEDIUM_NOT_PRESENT;
return -22;
return UMS_RES_INVALID_ARG;
}
return 0;
return UMS_RES_OK;
}
// Check if we are allowed to unload the media.
@ -1047,16 +1056,16 @@ static int _scsi_start_stop(usbd_gadget_ums_t *ums)
ums->set_text(ums->label, "#C7EA46 Status:# Unload attempt prevented");
ums->lun.sense_data = SS_MEDIUM_REMOVAL_PREVENTED;
return -22;
return UMS_RES_INVALID_ARG;
}
if (!loej)
return 0;
return UMS_RES_OK;
// Unmount means we exit UMS because of ejection.
ums->lun.unmounted = 1;
return 0;
return UMS_RES_OK;
}
static int _scsi_prevent_allow_removal(usbd_gadget_ums_t *ums)
@ -1067,7 +1076,7 @@ static int _scsi_prevent_allow_removal(usbd_gadget_ums_t *ums)
{
ums->lun.sense_data = SS_INVALID_COMMAND;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
prevent = ums->cmnd[4] & 0x01;
@ -1075,7 +1084,7 @@ static int _scsi_prevent_allow_removal(usbd_gadget_ums_t *ums)
{
ums->lun.sense_data = SS_INVALID_FIELD_IN_CDB;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
// Notify for possible unmounting?
@ -1085,7 +1094,7 @@ static int _scsi_prevent_allow_removal(usbd_gadget_ums_t *ums)
ums->lun.prevent_medium_removal = prevent;
return 0;
return UMS_RES_OK;
}
static int _scsi_read_format_capacities(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
@ -1132,7 +1141,7 @@ DPRINTF("SCSI command: %X; Dc=%d, D%c=%X; Hc=%d, H%c=%X\n",
{
ums->phase_error = 1;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
// Cmd length verification.
@ -1146,7 +1155,7 @@ DPRINTF("SCSI command: %X; Dc=%d, D%c=%X; Hc=%d, H%c=%X\n",
{
ums->phase_error = 1;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
}
@ -1167,7 +1176,7 @@ DPRINTF("SCSI command: %X; Dc=%d, D%c=%X; Hc=%d, H%c=%X\n",
ums->lun.sense_data = ums->lun.unit_attention_data;
ums->lun.unit_attention_data = SS_NO_SENSE;
return -22;
return UMS_RES_INVALID_ARG;
}
// Check that only command bytes listed in the mask are set.
@ -1178,7 +1187,7 @@ DPRINTF("SCSI command: %X; Dc=%d, D%c=%X; Hc=%d, H%c=%X\n",
{
ums->lun.sense_data = SS_INVALID_FIELD_IN_CDB;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
}
@ -1187,16 +1196,16 @@ DPRINTF("SCSI command: %X; Dc=%d, D%c=%X; Hc=%d, H%c=%X\n",
{
ums->lun.sense_data = SS_MEDIUM_NOT_PRESENT;
return -22;
return UMS_RES_INVALID_ARG;
}
return 0;
return UMS_RES_OK;
}
static int _ums_parse_scsi_cmd(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
u32 len;
int reply = -22; // Invalid argument.
int reply = UMS_RES_INVALID_ARG;
ums->phase_error = 0;
ums->short_packet_received = 0;
@ -1227,7 +1236,7 @@ static int _ums_parse_scsi_cmd(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
// We don't support MODE SELECT.
ums->lun.sense_data = SS_INVALID_COMMAND;
reply = -22;
reply = UMS_RES_INVALID_ARG;
}
break;
@ -1238,7 +1247,7 @@ static int _ums_parse_scsi_cmd(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
// We don't support MODE SELECT.
ums->lun.sense_data = SS_INVALID_COMMAND;
reply = -22;
reply = UMS_RES_INVALID_ARG;
}
break;
@ -1367,12 +1376,12 @@ static int _ums_parse_scsi_cmd(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
if (reply == 0)
{
ums->lun.sense_data = SS_INVALID_COMMAND;
reply = -22; // Invalid argument.
reply = UMS_RES_INVALID_ARG;
}
break;
}
if (reply == -22) // Invalid argument.
if (reply == UMS_RES_INVALID_ARG)
reply = 0; // Error reply length.
// Set up reply buffer for finish_reply(). Otherwise it's already set.
@ -1384,7 +1393,7 @@ static int _ums_parse_scsi_cmd(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
ums->residue -= reply;
}
return 0;
return UMS_RES_OK;
}
static int pad_with_zeros(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
@ -1398,12 +1407,12 @@ static int pad_with_zeros(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
u32 nsend = MIN(ums->usb_amount_left, USB_EP_BUFFER_MAX_SIZE);
memset(bulk_ctxt->bulk_in_buf + current_len_to_keep, 0, nsend - current_len_to_keep);
bulk_ctxt->bulk_in_length = nsend;
_ums_transfer_start(ums, bulk_ctxt, bulk_ctxt->bulk_in, USB_XFER_SYNCED);
_ums_transfer_start(ums, bulk_ctxt, bulk_ctxt->bulk_in, USB_XFER_SYNCED_DATA);
ums->usb_amount_left -= nsend;
current_len_to_keep = 0;
}
return 0;
return UMS_RES_OK;
}
static int throw_away_data(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
@ -1416,10 +1425,10 @@ static int throw_away_data(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
u32 amount = MIN(ums->usb_amount_left, USB_EP_BUFFER_MAX_SIZE);
bulk_ctxt->bulk_out_length = amount;
_ums_transfer_start(ums, bulk_ctxt, bulk_ctxt->bulk_out, USB_XFER_SYNCED);
_ums_transfer_start(ums, bulk_ctxt, bulk_ctxt->bulk_out, USB_XFER_SYNCED_DATA);
ums->usb_amount_left -= amount;
return 0;
return UMS_RES_OK;
}
// Throw away the data in a filled buffer.
@ -1431,15 +1440,15 @@ static int throw_away_data(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
bulk_ctxt->bulk_out_status != USB_RES_OK)
{
raise_exception(ums, UMS_STATE_ABORT_BULK_OUT);
return -4; // Interrupted system call
return UMS_RES_PROT_FATAL;
}
}
return 0;
return UMS_RES_OK;
}
static int finish_reply(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
int rc = 0;
int rc = UMS_RES_OK;
switch (ums->data_dir) {
case DATA_DIR_NONE:
@ -1463,7 +1472,7 @@ static int finish_reply(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
// If there's no residue, simply send the last buffer.
if (!ums->residue)
{
_ums_transfer_start(ums, bulk_ctxt, bulk_ctxt->bulk_in, USB_XFER_SYNCED);
_ums_transfer_start(ums, bulk_ctxt, bulk_ctxt->bulk_in, USB_XFER_SYNCED_DATA);
/* For Bulk-only, if we're allowed to stall then send the
* short packet and halt the bulk-in endpoint. If we can't
@ -1471,7 +1480,7 @@ static int finish_reply(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
}
else if (ums->can_stall)
{
_ums_transfer_start(ums, bulk_ctxt, bulk_ctxt->bulk_in, USB_XFER_SYNCED);
_ums_transfer_start(ums, bulk_ctxt, bulk_ctxt->bulk_in, USB_XFER_SYNCED_DATA);
rc = ums_set_stall(bulk_ctxt->bulk_in);
ums->set_text(ums->label, "#FFDD00 Error:# Residue. Stalled EP IN!");
}
@ -1491,7 +1500,7 @@ static int finish_reply(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
if (ums->short_packet_received) // Did the host stop sending unexpectedly early?
{
raise_exception(ums, UMS_STATE_ABORT_BULK_OUT);
rc = -4; // Interrupted system call
rc = UMS_RES_PROT_FATAL;
}
else // We can't stall. Read in the excess data and throw it away.
rc = throw_away_data(ums, bulk_ctxt);
@ -1574,7 +1583,7 @@ static int received_cbw(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
}
if (bulk_ctxt->bulk_out_status || bulk_ctxt->bulk_out_ignore)
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
/* Is the CBW valid? */
@ -1594,7 +1603,7 @@ static int received_cbw(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
// until the next reset.
ums_wedge_bulk_in_endpoint(ums);
bulk_ctxt->bulk_out_ignore = 1;
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
/* Is the CBW meaningful? */
@ -1613,7 +1622,7 @@ static int received_cbw(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
ums->set_text(ums->label, "#FFDD00 Error:# CBW unknown - Stalled both EP!");
}
return -22; // Invalid argument.
return UMS_RES_INVALID_ARG;
}
/* Save the command for later */
@ -1636,12 +1645,12 @@ static int received_cbw(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
if (!ums->lun.unmounted)
ums->timeouts = 0;
return 0;
return UMS_RES_OK;
}
static int get_next_command(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
{
int rc = 0;
int rc = UMS_RES_OK;
/* Wait for the next buffer to become available */
// while (bulk_ctxt->bulk_out_buf_state != BUF_STATE_EMPTY)
@ -1652,7 +1661,7 @@ static int get_next_command(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
bulk_ctxt->bulk_out_length = USB_BULK_CB_WRAP_LEN;
/* Queue a request to read a Bulk-only CBW */
_ums_transfer_start(ums, bulk_ctxt, bulk_ctxt->bulk_out, USB_XFER_SYNCED);
_ums_transfer_start(ums, bulk_ctxt, bulk_ctxt->bulk_out, USB_XFER_SYNCED_CMD);
/* We will drain the buffer in software, which means we
* can reuse it for the next filling. No need to advance
@ -1698,7 +1707,7 @@ static void send_status(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
csw->Status = status;
bulk_ctxt->bulk_in_length = USB_BULK_CS_WRAP_LEN;
_ums_transfer_start(ums, bulk_ctxt, bulk_ctxt->bulk_in, USB_XFER_SYNCED);
_ums_transfer_start(ums, bulk_ctxt, bulk_ctxt->bulk_in, USB_XFER_SYNCED_CMD);
}
static void handle_exception(usbd_gadget_ums_t *ums, bulk_ctxt_t *bulk_ctxt)
@ -1765,16 +1774,16 @@ static inline void _system_maintainance(usbd_gadget_ums_t *ums)
u32 time = get_tmr_ms();
if (timer_dram < time)
{
minerva_periodic_training();
timer_dram = get_tmr_ms() + 100;
}
else if (timer_status_bar < time)
if (timer_status_bar < time)
{
ums->system_maintenance(true);
timer_status_bar = get_tmr_ms() + 30000;
}
else if (timer_dram < time)
{
minerva_periodic_training();
timer_dram = get_tmr_ms() + EMC_PERIODIC_TRAIN_MS;
}
}
int usb_device_gadget_ums(usb_ctxt_t *usbs)

View file

@ -198,6 +198,7 @@ typedef struct _t210_usb2d_t
#define XUSB_DEV_XHCI_ST 0x34
#define XHCI_ST_RC BIT(0)
#define XHCI_ST_IP BIT(4)
#define XUSB_DEV_XHCI_RT_IMOD 0x38
#define XUSB_DEV_XHCI_PORTSC 0x3C
#define XHCI_PORTSC_PR BIT(4)
#define XHCI_PORTSC_PLS_MASK (0xF << 5)

View file

@ -724,7 +724,7 @@ static usb_ep_status_t _usbd_get_ep_status(usb_ep_t endpoint)
return USB_EP_STATUS_IDLE;
}
static int _usbd_ep_operation(usb_ep_t endpoint, u8 *buf, u32 len, bool sync)
static int _usbd_ep_operation(usb_ep_t endpoint, u8 *buf, u32 len, u32 sync_timeout)
{
if (!buf)
len = 0;
@ -797,12 +797,12 @@ static int _usbd_ep_operation(usb_ep_t endpoint, u8 *buf, u32 len, bool sync)
int res = USB_RES_OK;
usb_ep_status_t ep_status;
if (sync)
if (sync_timeout)
{
ep_status = _usbd_get_ep_status(endpoint);
if (ep_status == USB_EP_STATUS_ACTIVE)
{
u32 retries = 1000000; // Timeout 2s.
u32 retries = sync_timeout;
while (retries)
{
ep_status = _usbd_get_ep_status(endpoint);
@ -834,7 +834,7 @@ out:
static int _usbd_ep_ack(usb_ep_t ep)
{
return _usbd_ep_operation(ep, NULL, 0, true);
return _usbd_ep_operation(ep, NULL, 0, USB_XFER_SYNCED_ENUM);
}
static void _usbd_set_ep0_stall()
@ -1275,7 +1275,7 @@ static int _usbd_handle_ep0_control_transfer()
if (_wLength < size)
size = _wLength;
res = _usbd_ep_operation(USB_EP_CTRL_IN, usb_ep0_ctrl_buf, size, true);
res = _usbd_ep_operation(USB_EP_CTRL_IN, usb_ep0_ctrl_buf, size, USB_XFER_SYNCED_ENUM);
if (!res)
res = _usbd_ep_ack(USB_EP_CTRL_OUT);
}
@ -1402,7 +1402,7 @@ static usb_ep_status_t _usbd_get_ep1_status(usb_dir_t dir)
return _usbd_get_ep_status(ep);
}
int usb_device_ep1_out_read(u8 *buf, u32 len, u32 *bytes_read, bool sync)
int usb_device_ep1_out_read(u8 *buf, u32 len, u32 *bytes_read, u32 sync_timeout)
{
if ((u32)buf % USB_EP_BUFFER_ALIGN)
return USB2_ERROR_XFER_NOT_ALIGNED;
@ -1410,9 +1410,9 @@ int usb_device_ep1_out_read(u8 *buf, u32 len, u32 *bytes_read, bool sync)
if (len > USB_EP_BUFFER_MAX_SIZE)
len = USB_EP_BUFFER_MAX_SIZE;
int res = _usbd_ep_operation(USB_EP_BULK_OUT, buf, len, sync);
int res = _usbd_ep_operation(USB_EP_BULK_OUT, buf, len, sync_timeout);
if (sync && bytes_read)
if (sync_timeout && bytes_read)
*bytes_read = res ? 0 : len;
return res;
@ -1435,7 +1435,7 @@ int usb_device_ep1_out_read_big(u8 *buf, u32 len, u32 *bytes_read)
{
u32 len_ep = MIN(len, USB_EP_BUFFER_MAX_SIZE);
res = usb_device_ep1_out_read(buf_curr, len_ep, &bytes, USB_XFER_SYNCED);
res = usb_device_ep1_out_read(buf_curr, len_ep, &bytes, USB_XFER_SYNCED_DATA);
if (res)
return res;
@ -1455,7 +1455,7 @@ static int _usbd_get_ep1_out_bytes_read()
return (usbdaemon->ep_bytes_requested[USB_EP_BULK_OUT] - (usbdaemon->qhs[USB_EP_BULK_OUT].token >> 16));
}
int usb_device_ep1_out_reading_finish(u32 *pending_bytes, int tries)
int usb_device_ep1_out_reading_finish(u32 *pending_bytes)
{
usb_ep_status_t ep_status;
do
@ -1480,7 +1480,7 @@ int usb_device_ep1_out_reading_finish(u32 *pending_bytes, int tries)
return USB_ERROR_XFER_ERROR;
}
int usb_device_ep1_in_write(u8 *buf, u32 len, u32 *bytes_written, bool sync)
int usb_device_ep1_in_write(u8 *buf, u32 len, u32 *bytes_written, u32 sync_timeout)
{
if ((u32)buf % USB_EP_BUFFER_ALIGN)
return USB2_ERROR_XFER_NOT_ALIGNED;
@ -1488,9 +1488,9 @@ int usb_device_ep1_in_write(u8 *buf, u32 len, u32 *bytes_written, bool sync)
if (len > USB_EP_BUFFER_MAX_SIZE)
len = USB_EP_BUFFER_MAX_SIZE;
int res = _usbd_ep_operation(USB_EP_BULK_IN, buf, len, sync);
int res = _usbd_ep_operation(USB_EP_BULK_IN, buf, len, sync_timeout);
if (sync && bytes_written)
if (sync_timeout && bytes_written)
*bytes_written = res ? 0 : len;
return res;

View file

@ -30,8 +30,12 @@
#define USB_EP_BUFFER_MAX_SIZE (USB_EP_BUFFER_4_TD)
#define USB_EP_BUFFER_ALIGN (USB_TD_BUFFER_PAGE_SIZE)
#define USB_XFER_START false
#define USB_XFER_SYNCED true
#define USB_XFER_START 0
#define USB_XFER_SYNCED_ENUM 1000000
#define USB_XFER_SYNCED_CMD 1000000
#define USB_XFER_SYNCED_DATA 2000000
#define USB_XFER_SYNCED_CLASS 5000000
#define USB_XFER_SYNCED -1
typedef enum _usb_hid_type
{
@ -169,10 +173,10 @@ typedef struct _usb_ops_t
int (*usb_device_class_send_max_lun)(u8);
int (*usb_device_class_send_hid_report)();
int (*usb_device_ep1_out_read)(u8 *, u32, u32 *, bool);
int (*usb_device_ep1_out_read)(u8 *, u32, u32 *, u32);
int (*usb_device_ep1_out_read_big)(u8 *, u32, u32 *);
int (*usb_device_ep1_out_reading_finish)(u32 *, int);
int (*usb_device_ep1_in_write)(u8 *, u32, u32 *, bool);
int (*usb_device_ep1_out_reading_finish)(u32 *);
int (*usb_device_ep1_in_write)(u8 *, u32, u32 *, u32);
int (*usb_device_ep1_in_writing_finish)(u32 *);
bool (*usb_device_get_suspended)();
bool (*usb_device_get_port_in_sleep)();

View file

@ -881,7 +881,7 @@ int xusb_device_init()
_xusbd_init_device_clocks();
// Enable AHB redirect for access to IRAM for Event/EP ring buffers.
mc_enable_ahb_redirect(); // can be skipped if IRAM is not used/////////////////
mc_enable_ahb_redirect(); // Can be skipped if IRAM is not used.
// Enable XUSB device IPFS.
XUSB_DEV_DEV(XUSB_DEV_CONFIGURATION) |= DEV_CONFIGURATION_EN_FPCI;
@ -895,14 +895,11 @@ int xusb_device_init()
XUSB_DEV_DEV(XUSB_DEV_INTR_MASK) |= DEV_INTR_MASK_IP_INT_MASK;
// AHB USB performance cfg.
//TODO: Doesn't help..
/*
AHB_GIZMO(AHB_GIZMO_AHB_MEM) |= AHB_MEM_DONT_SPLIT_AHB_WR | AHB_MEM_ENB_FAST_REARBITRATE;
AHB_GIZMO(AHB_GIZMO_USB3) |= AHB_GIZMO_IMMEDIATE;
AHB_GIZMO(AHB_ARBITRATION_PRIORITY_CTRL) = PRIORITY_CTRL_WEIGHT(7) | PRIORITY_SELECT_USB3;
AHB_GIZMO(AHB_AHB_MEM_PREFETCH_CFG1) =
MEM_PREFETCH_ENABLE | MEM_PREFETCH_USB3_MST_ID | MEM_PREFETCH_ADDR_BNDRY(12) | 0x1000; // Addr boundary 64KB, Inactivity 4096 cycles.
*/
// Initialize context.
usbd_xotg = &usbd_xotg_controller_ctxt;
@ -1771,6 +1768,13 @@ int xusb_device_enumerate(usb_gadget_type gadget)
usbd_xotg->gadget = gadget;
/*
* Set interrupt moderation to 0us.
* This is important because default value creates a 4.62ms latency.
* Effectively hurting transfers by having 15% to 96% performance loss.
*/
XUSB_DEV_XHCI(XUSB_DEV_XHCI_RT_IMOD) = 0;
// Disable Wake events.
XUSB_PADCTL(XUSB_PADCTL_ELPG_PROGRAM_0) = 0;
XUSB_PADCTL(XUSB_PADCTL_ELPG_PROGRAM_1) = 0;
@ -1803,7 +1807,7 @@ int xusb_device_enumerate(usb_gadget_type gadget)
u32 timer = get_tmr_ms() + 90000;
while (true)
{
int res = _xusb_ep_operation(1000000); // 2s timeout.
int res = _xusb_ep_operation(USB_XFER_SYNCED_ENUM); // 2s timeout.
if (res && res != USB_ERROR_TIMEOUT)
return res;
@ -1826,7 +1830,7 @@ void xusb_end(bool reset_ep, bool only_controller)
CLOCK(CLK_RST_CONTROLLER_RST_DEV_W_SET) = BIT(CLK_W_XUSB_PADCTL);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_W_CLR) = BIT(CLK_W_XUSB);
CLOCK(CLK_RST_CONTROLLER_RST_DEV_W_SET) = BIT(CLK_W_XUSB);
mc_disable_ahb_redirect();///////////////////
mc_disable_ahb_redirect(); // Can be skipped if IRAM is not used.
}
int xusb_handle_ep0_ctrl_setup()
@ -1844,7 +1848,7 @@ int xusb_handle_ep0_ctrl_setup()
return USB_RES_OK;
}
int xusb_device_ep1_out_read(u8 *buf, u32 len, u32 *bytes_read, bool sync)
int xusb_device_ep1_out_read(u8 *buf, u32 len, u32 *bytes_read, u32 sync_tries)
{
if (len > USB_EP_BUFFER_MAX_SIZE)
len = USB_EP_BUFFER_MAX_SIZE;
@ -1855,10 +1859,10 @@ int xusb_device_ep1_out_read(u8 *buf, u32 len, u32 *bytes_read, bool sync)
_xusb_issue_normal_trb(buf, len, USB_DIR_OUT);
usbd_xotg->tx_count[USB_DIR_OUT]++;
if (sync)
if (sync_tries)
{
while (!res && usbd_xotg->tx_count[USB_DIR_OUT])
res = _xusb_ep_operation(1000000); // 2s timeout.
res = _xusb_ep_operation(sync_tries);
if (bytes_read)
*bytes_read = res ? 0 : usbd_xotg->bytes_remaining[USB_DIR_OUT];
@ -1882,7 +1886,7 @@ int xusb_device_ep1_out_read_big(u8 *buf, u32 len, u32 *bytes_read)
{
u32 len_ep = MIN(len, USB_EP_BUFFER_MAX_SIZE);
int res = xusb_device_ep1_out_read(buf_curr, len_ep, &bytes, USB_XFER_SYNCED);
int res = xusb_device_ep1_out_read(buf_curr, len_ep, &bytes, USB_XFER_SYNCED_DATA);
if (res)
return res;
@ -1894,11 +1898,11 @@ int xusb_device_ep1_out_read_big(u8 *buf, u32 len, u32 *bytes_read)
return USB_RES_OK;
}
int xusb_device_ep1_out_reading_finish(u32 *pending_bytes, int tries)
int xusb_device_ep1_out_reading_finish(u32 *pending_bytes)
{
int res = USB_RES_OK;
while (!res && usbd_xotg->tx_count[USB_DIR_OUT])
res = _xusb_ep_operation(tries);
res = _xusb_ep_operation(USB_XFER_SYNCED); // Infinite retries.
if (pending_bytes)
*pending_bytes = res ? 0 : usbd_xotg->bytes_remaining[USB_DIR_OUT];
@ -1908,7 +1912,7 @@ int xusb_device_ep1_out_reading_finish(u32 *pending_bytes, int tries)
return res;
}
int xusb_device_ep1_in_write(u8 *buf, u32 len, u32 *bytes_written, bool sync)
int xusb_device_ep1_in_write(u8 *buf, u32 len, u32 *bytes_written, u32 sync_tries)
{
if (len > USB_EP_BUFFER_MAX_SIZE)
len = USB_EP_BUFFER_MAX_SIZE;
@ -1921,10 +1925,10 @@ int xusb_device_ep1_in_write(u8 *buf, u32 len, u32 *bytes_written, bool sync)
_xusb_issue_normal_trb(buf, len, USB_DIR_IN);
usbd_xotg->tx_count[USB_DIR_IN]++;
if (sync)
if (sync_tries)
{
while (!res && usbd_xotg->tx_count[USB_DIR_IN])
res = _xusb_ep_operation(1000000); // 2s timeout.
res = _xusb_ep_operation(sync_tries);
if (bytes_written)
*bytes_written = res ? 0 : usbd_xotg->bytes_remaining[USB_DIR_IN];
@ -1947,7 +1951,7 @@ int xusb_device_ep1_in_writing_finish(u32 *pending_bytes)
{
int res = USB_RES_OK;
while (!res && usbd_xotg->tx_count[USB_DIR_IN])
res = _xusb_ep_operation(1000000); // 2s timeout.
res = _xusb_ep_operation(USB_XFER_SYNCED); // Infinite retries.
if (pending_bytes)
*pending_bytes = res ? 0 : usbd_xotg->bytes_remaining[USB_DIR_IN];
@ -1973,7 +1977,7 @@ bool xusb_device_class_send_max_lun(u8 max_lun)
// Wait for request and transfer start.
while (usbd_xotg->device_state != XUSB_LUN_CONFIGURED)
{
_xusb_ep_operation(500000);
_xusb_ep_operation(USB_XFER_SYNCED_CLASS);
if (timer < get_tmr_ms() || btn_read_vol() == (BTN_VOL_UP | BTN_VOL_DOWN))
return true;
}
@ -1991,7 +1995,7 @@ bool xusb_device_class_send_hid_report()
// Wait for request and transfer start.
while (usbd_xotg->device_state != XUSB_HID_CONFIGURED)
{
_xusb_ep_operation(500000);
_xusb_ep_operation(USB_XFER_SYNCED_CLASS);
if (timer < get_tmr_ms() || btn_read_vol() == (BTN_VOL_UP | BTN_VOL_DOWN))
return true;
}

View file

@ -74,6 +74,9 @@ typedef int bool;
#define true 1
#define false 0
#define DISABLE 0
#define ENABLE 1
#define BOOT_CFG_AUTOBOOT_EN BIT(0)
#define BOOT_CFG_FROM_LAUNCH BIT(1)
#define BOOT_CFG_FROM_ID BIT(2)

View file

@ -1,6 +1,6 @@
/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018 CTCaer
* Copyright (c) 2018-2020 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
@ -44,7 +44,7 @@ u32 get_tmr_ms()
u32 get_tmr_us()
{
return TMR(TIMERUS_CNTR_1US); //TIMERUS_CNTR_1US
return TMR(TIMERUS_CNTR_1US);
}
void msleep(u32 ms)
@ -132,53 +132,58 @@ void panic(u32 val)
usleep(1);
}
void reboot_normal()
void power_set_state(power_state_t state)
{
u8 reg;
// Unmount and power down sd card.
sd_end();
hw_reinit_workaround(false, 0);
panic(0x21); // Bypass fuse programming in package1.
}
void reboot_rcm()
{
sd_end();
hw_reinit_workaround(false, 0);
PMC(APBDEV_PMC_SCRATCH0) = PMC_SCRATCH0_MODE_RCM;
PMC(APBDEV_PMC_CNTRL) |= PMC_CNTRL_MAIN_RST;
while (true)
bpmp_halt();
}
void reboot_full()
{
sd_end();
hw_reinit_workaround(false, 0);
// Enable soft reset wake event.
u8 reg = i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG2);
reg |= MAX77620_ONOFFCNFG2_SFT_RST_WK;
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG2, reg);
// Do a soft reset.
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG1, MAX77620_ONOFFCNFG1_SFT_RST);
while (true)
bpmp_halt();
}
void power_off()
{
sd_end();
// De-initialize and power down various hardware.
hw_reinit_workaround(false, 0);
// Stop the alarm, in case we injected and powered off too fast.
max77620_rtc_stop_alarm();
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG1, MAX77620_ONOFFCNFG1_PWR_OFF);
// Set power state.
switch (state)
{
case REBOOT_RCM:
PMC(APBDEV_PMC_SCRATCH0) = PMC_SCRATCH0_MODE_RCM; // Enable RCM path.
PMC(APBDEV_PMC_CNTRL) |= PMC_CNTRL_MAIN_RST; // PMC reset.
break;
case REBOOT_BYPASS_FUSES:
panic(0x21); // Bypass fuse programming in package1.
break;
case POWER_OFF:
// Initiate power down sequence and do not generate a reset (regulators retain state).
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG1, MAX77620_ONOFFCNFG1_PWR_OFF);
break;
case POWER_OFF_RESET:
case POWER_OFF_REBOOT:
default:
// Enable/Disable soft reset wake event.
reg = i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG2);
if (state == POWER_OFF_RESET)
reg &= ~MAX77620_ONOFFCNFG2_SFT_RST_WK; // Do not wake up after power off.
else // POWER_OFF_REBOOT.
reg |= MAX77620_ONOFFCNFG2_SFT_RST_WK; // Wake up after power off.
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG2, reg);
// Initiate power down sequence and generate a reset (regulators' state resets).
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG1, MAX77620_ONOFFCNFG1_SFT_RST);
break;
}
while (true)
bpmp_halt();
}
void power_set_state_ex(void *param)
{
power_state_t *state = (power_state_t *)param;
power_set_state(*state);
}

View file

@ -1,6 +1,6 @@
/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018 CTCaer
* Copyright (c) 2018-2020 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
@ -21,6 +21,18 @@
#include <utils/types.h>
#include <mem/minerva.h>
#define NYX_NEW_INFO 0x3058594E
typedef enum
{
REBOOT_RCM, // PMC reset. Enter RCM mode.
REBOOT_BYPASS_FUSES, // PMC reset via watchdog. Enter Normal mode. Bypass fuse programming in package1.
POWER_OFF, // Power off PMIC. Do not reset regulators.
POWER_OFF_RESET, // Power off PMIC. Reset regulators.
POWER_OFF_REBOOT, // Power off PMIC. Reset regulators. Power on.
} power_state_t;
typedef enum
{
NYX_CFG_BIS = BIT(5),
@ -49,6 +61,10 @@ typedef struct _cfg_op_t
typedef struct _nyx_info_t
{
u32 magic;
u32 sd_init;
u32 sd_errors[3];
u8 rsvd[0x1000];
u32 disp_id;
u32 errors;
} nyx_info_t;
@ -65,17 +81,18 @@ typedef struct _nyx_storage_t
emc_table_t mtc_table[10];
} nyx_storage_t;
u32 get_tmr_us();
u32 get_tmr_ms();
u32 get_tmr_s();
void usleep(u32 us);
void msleep(u32 ms);
void panic(u32 val);
void reboot_normal();
void reboot_rcm();
void reboot_full();
void power_off();
void exec_cfg(u32 *base, const cfg_op_t *ops, u32 num_ops);
u32 crc32_calc(u32 crc, const u8 *buf, u32 len);
u32 get_tmr_us();
u32 get_tmr_ms();
u32 get_tmr_s();
void usleep(u32 us);
void msleep(u32 ms);
void panic(u32 val);
void power_set_state(power_state_t state);
void power_set_state_ex(void *param);
#endif

View file

@ -6,7 +6,7 @@
#include <utils/util.h>
#include "../utils/utils.h"
#include "../tegraexplorer/tools.h"
#include <gfx/di.h>
#include <display/di.h>
#include "../config.h"
static Input_t inputs = {0};
@ -21,11 +21,6 @@ extern hekate_config h_cfg;
Input_t *hidRead(){
jc_gamepad_rpt_t *controller = joycon_poll();
if (h_cfg.t210b01){ // Disable home and capture buttons on mariko to avoid weird behaviour
controller->home = 0;
controller->cap = 0;
}
if (controller->home)
RebootToPayloadOrRcm();

View file

@ -21,7 +21,7 @@
#include "sept.h"
#include "../config.h"
#include <utils/ini.h>
#include <gfx/di.h>
#include <display/di.h>
#include <libs/fatfs/ff.h>
#include <mem/heap.h>
#include <soc/hw_init.h>

View file

@ -1,7 +1,7 @@
#include "keys.h"
#include "../config.h"
#include <gfx/di.h>
#include <display/di.h>
#include <gfx_utils.h>
#include "../hos/pkg1.h"
#include "../hos/pkg2.h"

View file

@ -20,7 +20,7 @@
#include <string.h>
#include "config.h"
#include <gfx/di.h>
#include <display/di.h>
#include <gfx_utils.h>
#include <libs/fatfs/ff.h>
#include <mem/heap.h>

View file

@ -15,6 +15,7 @@
#include <utils/util.h>
#include "../fs/fsutils.h"
#include <soc/fuse.h>
#include "../utils/utils.h"
enum {
MainExplore = 0,

View file

@ -12,6 +12,14 @@
extern int launch_payload(char *path);
void ALWAYS_INLINE power_off(){
power_set_state(POWER_OFF);
}
void ALWAYS_INLINE reboot_rcm(){
power_set_state(REBOOT_RCM);
}
void RebootToPayloadOrRcm(){
if (FileExists("sd:/atmosphere/reboot_payload.bin"))
launch_payload("sd:/atmosphere/reboot_payload.bin");

View file

@ -8,4 +8,7 @@ void WaitFor(u32 ms);
void RebootToPayloadOrRcm();
#define FREE(x) free(x); x = NULL;
char *ShowKeyboard(const char *toEdit, u8 alwaysRet);
char *ShowKeyboard(const char *toEdit, u8 alwaysRet);
void power_off();
void reboot_rcm();